Skip to main content

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 141))

Abstract

A short review on central schemes for the numerical solution of hyperbolic systems of conservation laws is given. The main focus of the talk concerns the construction of high order central schemes in one and two space dimensions, and the extension of central schemes to systems with source term. The treatment of stiff source and the construction of well-balanced central scheme will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Anile and O. Muscato, Improved hydrodynamical model for carrier transport in semiconductors, Phys. Rev. B 51 (1995), 16728–16740.

    Article  Google Scholar 

  2. Arminjon P., StanescuD.Viallon M.-C., A Two-Dimensional Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Compressible Flow, Proc. 6th. Int. Symp. on CFD, Lake Tahoe, 1995, M. Hafez and K. Oshima, editors, Vol. IV, 7–14.

    Google Scholar 

  3. Arminjon P., Viallon M.-C. and Madrane A., A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids, Int. J. Comput. Fluid Dyn., 9 (1997), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bianco, G. Puppo, G. Russo, High Order Central Schemes for Hyperbolic Systems of Conservation Laws, SIAM J. Sci. Comp., 21 (1999), 294–322.

    MathSciNet  MATH  Google Scholar 

  5. R. E. Caflisch, S. Jin and G. Russo, Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM J. Numer. Anal., 34 (1997), 246–281.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Gatignol, Théorie cinétique des gaz à répartition discréte de vitesses. Lectures Notes in Physics, 36 (1975) Springer-Verlag.

    Google Scholar 

  7. L. Gosse, A Well-Balanced Flux-Vector Splitting Scheme Designed for Hyperbolic Systems of Conservation Laws with Source Terms, Comput. Math. Appl. 39 (2000), 135–159.

    MathSciNet  MATH  Google Scholar 

  8. A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly High Order Accurate Essentially Nonoscillatory Schemes. III, J. Comput. Phys., 71 (1987), 231–303.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang G.-S., Levy D., Lin C.-T., Osher S., Tadmor E. High-Resolution Non-Oscillatory Central Schemes with Non-Staggered Grids for Hyperbolic Conservation Laws, SIAM J. Numer. Anal., 35 (1998), 2147–2168.

    Article  MathSciNet  MATH  Google Scholar 

  10. G.-S. Jiang, E. Tadmor, Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws, SIAM J. Sci. Comp., 19 (1998), 1892–1917.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Kupferman, E. Tadmor, A fast,high resolution, second-order central scheme for incompressible flow, Proc.Natl.Acad.Sci.USA 94 (1997), 4848–4852.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Kurganov, D. Levy, A Third-Order Semi-Discrete Central Scheme for Conservation Laws and Convection-Diffusion Equations,SIAM J. Sci. Comput. 22 (2000), 1461–1488.

    MathSciNet  MATH  Google Scholar 

  13. A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160 (2000), 241–282.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.J. LeVequeBalancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys.146346–365 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Levy, G. Puppo, G. Russo, Central WENO Schemes for Hyperbolic Systems of Conservation Laws, M2AN, 33 (1999), 547–571.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Levy, G. Puppo, G. Russo, Compact Central WENO Schemes for Multidimensional Conservation Laws, SIAM J. Sci. Comput. 22 (2000), 656–672.

    MathSciNet  MATH  Google Scholar 

  17. D. Levy, E. TadmorNon-oscillatory central schemes for the incompressible Euler equations, Mathematical Research Letters, 4 (1997), 321–340.

    MathSciNet  MATH  Google Scholar 

  18. S. F. Liotta, V. Romano and G. Russo, Central schemes for balance laws of relaxation type, SIAM J. Numer. Anal. 38 (2000), 1337–1356.

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu X.-D., Osher S., Chan T., Weighted Essentially Non-oscillatory Schemes, J. Comput. Phys., 115 (1994), 200–212.

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu-Dong Liu, S. Osher, Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, J. Comput. Phys. 142 (1998), 304–330.

    Article  MathSciNet  MATH  Google Scholar 

  21. X.-D. Liu, E. Tadmor, Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws, Numer. Math., 79 (1998), 397–425.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. M¨¹ller and T. Ruggeri, Rational extended thermodynamics, (1998) Springer-Verlag, Berlin.

    Book  Google Scholar 

  23. H. Nessyahu, E. Tadmor, Non-oscillatory Central Differencing for Hyperbolic Conservation Laws, J. Comput. Phys., 87 (1990), 408–463.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Russo, Well Balanced central schemes, in preparation.

    Google Scholar 

  25. R. Sanders and W. Weiser, A High Resolution Staggered Mesh Approach for Nonlinear Hyperbolic Systems of Conservation Laws, J. Comput. Phys., 10 (1992), 314–329.

    Article  MathSciNet  Google Scholar 

  26. Shu C.-W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics (editor: A. Quarteroni), Springer, Berlin, 1998.

    Google Scholar 

  27. J.J. Stoker, Water waves, (1957) Interscience Publishers, New York.

    MATH  Google Scholar 

  28. Zennaro M., Natural Continuous Extensions of Runge-Kutta Methods, Math. Comp., 46 (1986), 119–133.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Russo, G. (2001). Central Schemes for Balance Laws. In: Freistühler, H., Warnecke, G. (eds) Hyperbolic Problems: Theory, Numerics, Applications. ISNM International Series of Numerical Mathematics, vol 141. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8372-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8372-6_35

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9538-5

  • Online ISBN: 978-3-0348-8372-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics