Skip to main content

Towards a Kinetic Model of Turbulent Incompressible Fluids

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 140))

  • 497 Accesses

Abstract

A turbulence model for incompressible fluids is derived from kinetic theory. The kinetic model involves a relaxation time type collision operator which describes the relaxation of the probability distribution function (pdf) towards an isotropic pdf on a time scaleT.The dependence ofTupon the kinetic turbulent energy can be tuned in such a way that both the so called “viscous subrange” (dominated by molecular viscosity) and the “inertial range” (obeying the Kolmogorov law) can be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. BrenierConvergence of the Vlasov-Poisson system to the incompressible Eulerequation, to appear in Comm. PDE.

    Google Scholar 

  2. Y. Brenier and E. GrenierLimite singulière du système de Vlasov-Poisson dans le régime de quasineutralitéC. R. Acad. Sci. Paris, 318, Série I, (1994), pp. 121–124.

    MathSciNet  MATH  Google Scholar 

  3. Y. Brenier and L. CorriasA kinetic formulation for multi-branch entropy solutions of scalar conservation lawsAnn. Inst. H. Poincaré (Ann. Non Linéaire), 15 (1998), pp. 169–190.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. ChassaingTurbulence en mécanique des fluideslecture notes, ENSEEIHT, Toulouse, France.

    Google Scholar 

  5. P. Degond, J. L. López and P. F. Peyrard, Onthe macroscopic dynamics induced byamodelwave-particlecollision operator.J. Cont. Mech. Therm. 10 (1998), pp. 153–178.

    Article  MATH  Google Scholar 

  6. P. Degond, J. L. López, F. Poupaud and C. SchmeiserExistence of solutions of a kinetic equation modeling cometary flowsJ. Stat. Phys., 96 (1999), pp. 361–376.

    Article  MATH  Google Scholar 

  7. P. Degond and M. Lemou, Onthe Viscosity and thermal conduction of fluids with mutivalued internal energy.Eur. J. Mech. B-Fluids, 20 (2001), pp. 303–327.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. E. Launder, D. B. SpaldingMathematical models for turbulence.Academic Press. 1972.

    Google Scholar 

  9. M. Lesieur.Turbulence in fluids - Stochastic and numerical modelingKluwer, 1990.

    Book  Google Scholar 

  10. B. Mohammadi and O. PironneauAnalysis oftheK-Epsilon turbulence modelMasson and Wiley, New-York, 1993.

    Google Scholar 

  11. S. B. PopeTurbulent FlowsCambridge University Press. 2000.

    Google Scholar 

  12. L. L. Williams and J. R. JokipiiViscosity and inertia in cosmic-ray transport: effects of an average magnetic fieldThe Astrophysical Journal 371 (1991), pp. 639–647.

    Article  Google Scholar 

  13. L. Saint RaymondIncompressible hydrodynamic limit ofakinetic model of wave-particles interactionpreprint LMENS-98–50, École Normale Supérieure, Paris, dec. 98.

    Google Scholar 

  14. L. L. Williams, N. Schwadron, J. R. Jokipii and T. I. GombosiA unified transport equation for both cosmic rays andthermalparticlesThe Astrophysical Journal 405 (1993), pp. L79–L81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Degond, P., Lemou, M. (2001). Towards a Kinetic Model of Turbulent Incompressible Fluids. In: Freistühler, H., Warnecke, G. (eds) Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathematics, vol 140. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8370-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8370-2_31

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9537-8

  • Online ISBN: 978-3-0348-8370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics