Skip to main content

Viscosity Solutions for Hyperbolic Systems where Shock Curves are Straight Lines

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 140))

  • 502 Accesses

Abstract

Consider a strictly hyperbolic n x n system of conservation laws in one space dimension:

$${{u}_{t}} + f{{(u)}_{x}} = 0.$$
(1)

Assuming that the initial data has small total variation, the global existence of weak solutions was proved by Glimm [9], while the uniqueness and stability of entropy admissible BV solutions was recently established in a series of papers [2 4 5 6 7 13]. See also [3] for a comprehensive presentation of these results. A long standing open question is whether these discontinuous solutions can be obtained as vanishing viscosity limits. More precisely, given a smooth initial data \(\bar{u}:\mathbb{R} \mapsto {{\mathbb{R}}^{n}}\) with small total variation, consider the parabolic Cauchy problem

$${{u}_{t}} + A(u){{u}_{x}} = \varepsilon {{u}_{{xx}}},$$
(2)
$$u(0,x) = \bar{u}(x).$$
(3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bianchini and A. Bressan, BV solutions for a class of viscous hyperbolic systemsIndiana Univ. Math. J.49 (2000).

    Google Scholar 

  2. A. Bressan, The unique limit of the Glimm schemeArch. Rational Mech. Anal.130 (1995), 205–230.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. BressanHyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem.Oxford University Press, 2000.

    Google Scholar 

  4. A. Bressan, G. Crasta, and B. Piccoli, Well posedness of the Cauchy problem for n x n systems of conservation laws, Amer.Math. Soc. Memoir649 (2000).

    Google Scholar 

  5. A. Bressan and P. Goatin, Oleinik type estimates and uniqueness for n x n conservation lawsJ. Differential Equations156 (1999), 26–49.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bressan and M. Lewicka, A uniqueness condition for hyperbolic systems of conservation lawsDiscr. Cont. Dynam. Syst.6 (2000) 673–682.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bressan, T. P. Liu and T. Yang, Llstability estimates for n x n conservation lawsArch. Rat. Mech. Anal.149 (1999), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. J. DiPerna, Convergence of approximate solutions to conservation lawsArch. Rational Mech. Anal.82 (1983), 27–70.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equationsComm. Pure Appl. Math.18 (1965), 697–715.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation lawsArch. Rational Mech. Anal.121 (1992), 235–265.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Kruzhkov, First-order quasilinear equations with several space variablesMath. USSR Sbornik10 (1970), 217–273.

    Article  MATH  Google Scholar 

  12. T. P. Liu, Nonlinear stability of shock waves for viscous conservation lawsAmer. Math. Soc. Memoir328 (1986).

    Google Scholar 

  13. T. P. Liu and T. Yang, Well posedness theory for hyperbolic conservation lawsComm. Pure Appl. Math.52 (1999), 1553–1586.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. SerreSystèmes de Lois de Conservation IIDiderot Editor, Paris 1996.

    MATH  Google Scholar 

  15. A. Szepessy and Z. Xin, Nonlinear stability of viscous shocksArch. Rational Mech. Anal.122 (1993), 53–103.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Szepessy and K. Zumbrun, stability of rarefaction waves in viscous mediaArch. Rational Mech. Anal.133 (1996), 249–298.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. H. Yu, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation lawsArch. Rational Mech. Anal.146 (1999), 275–370.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Bianchini, S., Bressan, A. (2001). Viscosity Solutions for Hyperbolic Systems where Shock Curves are Straight Lines. In: Freistühler, H., Warnecke, G. (eds) Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathematics, vol 140. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8370-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8370-2_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9537-8

  • Online ISBN: 978-3-0348-8370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics