Skip to main content

On the Stability of Large Amplitude Semi-discrete Shock Profiles by Means of an Evans Function in Infinite Dimensions

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 140))

  • 497 Accesses

Abstract

The linear stability of semi-discrete (i.e. continuous in time and discrete in space) shock profiles is investigated. It is encoded in the spectrum of a retarded differential operator. In order to obtain necessary stability conditions, an Evans function based on the (infinite dimensional) eigenvalue equations and their adjoints is constructed. The method is then applied to the cases of Lax shocks and of undercompressive shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Alexander, R. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability analysis of travelling waves.J. Reine Angew. Math.410:167–212, 1990.

    MathSciNet  MATH  Google Scholar 

  2. S. Benzoni-Gavage. Semi-discrete shock profiles for hyperbolic systems of conservation laws.Physica D Nonlinear Analysis115:109–123, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Benzoni-Gavage. On the stability of semi-discrete shock profiles by means of an Evans function in infinite dimension.C. R. Acad. Sci. Paris Série I329:377–382, 1999.

    MathSciNet  MATH  Google Scholar 

  4. S. Benzoni-Gavage. Stability of semi-discrete shock profiles by means of an Evans function in infinite dimensions. Postscript file available athttp://www.umpa.enslyon.fr/benzoni/sd.ps

    Google Scholar 

  5. S. Benzoni-Gavage and P. Huot. Existence of semi-discrete shocks.Discrete Contin. Dynam. SystemsTo appear

    Google Scholar 

  6. S. Benzoni-Gavage, D. Serre, and Zumbrun K. Alternate Evans functions and viscous shock waves.SIAM Journal on Mathematical Analysis32(5):929–962, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  7. S.-N. Chow, J. Mallet-Paret, and W. Shen. Traveling waves in lattice dynamical systems.J. Differential Equations149(2):248–291, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, and H.-O. Walther.Delay equations.Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  9. J.W. Evans. Nerve axon equations. I, II, III, IV.IndianaUniv.Math. J.21:877–885, 22:75–90, 22:577–593, 24(12):1169–1190,1971/72/73/74/75.

    Google Scholar 

  10. R.A. Gardner and K. Zumbrun. The gap lemma and geometric criteria for instability of viscous shock profiles.Comm. Pure Appl. Math.51(7):797–855, 1998.

    Article  MathSciNet  Google Scholar 

  11. J.K. Hale and S.M.V. Lunel.Introduction to Functional Differential Equations.Springer Verlag, 1993.

    Google Scholar 

  12. T. Kapitula. The Evans function and generalized Melnikov integrals.SIAM J. Math. Anal.30(2):273–297 (electronic), 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. X.-B. Lin. Exponential dichotomies and homoclinic orbits in functional-differential equations.J. Differential Equations63(2):227–254, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  14. T.-P. Liu and S.-H. Yu. Continuum shock profiles for discrete conservation laws, I. Construction.Comm. Pure Appl. Math.52(1):85–127, 1999.

    Article  MATH  Google Scholar 

  15. T.-P. Liu and S.-H. Yu. Continuum shock profiles for discrete conservation laws. II. Stability.Comm. Pure Appl. Math.52(9):1047–1073, 1999.

    Article  MATH  Google Scholar 

  16. J. Mallet-Paret. The Fredholm alternative for functional differential equations of mixed type.J. Dynam. Differential Equations11(1):1–47, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Majda and J. Ralston. Discrete shock profiles for systems of conservation laws.Comm. Pure Appl. Math.32(4):445–482, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.L. Pego and M.I. Weinstein. Eigenvalues, and instabilities of solitary waves.Philos. Trans. Roy. Soc. London Ser.A, 340(1656):47–94, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  19. K Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock waves.Indiana Univ. Math. J.47(3):741–871, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Benzoni-Gavage, S. (2001). On the Stability of Large Amplitude Semi-discrete Shock Profiles by Means of an Evans Function in Infinite Dimensions. In: Freistühler, H., Warnecke, G. (eds) Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathematics, vol 140. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8370-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8370-2_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9537-8

  • Online ISBN: 978-3-0348-8370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics