Skip to main content

Combinatorial quantization of Euclidean gravity in three dimensions

  • Conference paper

Part of the book series: Progress in Mathematics ((PM,volume 198))

Abstract

In the Chern-Simons formulation of Einstein gravity in 2+1 dimensions, the phase space is the moduli space of flat G-connections on a two-dimensional surface, where G is a typically non-compact Lie group which depends on the signature of space-time and the cosmological constant. For Euclidean signature and vanishing cosmological constant, G is the three-dimensional Euclidean group. For this case the Poisson structure of the moduli space is given explicitly in terms of a classical r-matrix. It is shown that the quantum R-matrix of the quantum double D(SU(2)) provides a quantization of that Poisson structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Achucarro and P. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B180 (1986), 85–100.

    MathSciNet  Google Scholar 

  2. A. Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons Theory, Commun. Math. Phys. 172 (1995), 317–358.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Yu. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons Theory II, Commun. Math. Phys. 174 (1995), 561–604.

    Article  MathSciNet  Google Scholar 

  4. A. Yu. Alekseev and V. Schomerus, Representation theory of Chern-Simons observables, Duke Math. J. 85 (1996), 447–510.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Yu. Alekseev, A. Z. Malkin and E. Meinrenken, Lie group valued moment maps, J. Diff. Geom. 48 (1998), 445–495.

    MathSciNet  MATH  Google Scholar 

  6. M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. London A308 (1983), 523–615.

    MathSciNet  Google Scholar 

  7. [] M. F. Atiyah, The Geometry and Physics of Knots, Cambridge University Press, Cambridge.

    Google Scholar 

  8. F. A. Bais, P. van Driel, and M. de Wild Propitius, Quantum symmetries in discrete gauge theories, Phys. Lett. B 280 (1992), 63–70.

    Article  MathSciNet  Google Scholar 

  9. F. A. Bais and N. M. Muller, Topological field theory and the quantum double of SU(2), Nucl. Phys. B530 (1998), 349–400.

    Article  MathSciNet  Google Scholar 

  10. [] F. A. Bais, N. M. Muller and B. J. Schroers, Quantum double symmetry and topological interactions in (2+1)-dimensional quantum gravity, in preparation.

    Google Scholar 

  11. P. Bonneau, Topological quantum double, Rev. Math. Phys. 6 (1994), 305–318.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Buffenoir and Ph. Roche, Harmonic analysis on the quantum Lorentz group, Commun. Math. Phys. 207 (1999), 499–555.

    Article  MathSciNet  MATH  Google Scholar 

  13. [] S. Carlip, Lectures on 2+1 dimensional gravity,UCD-95–6 (1995), grgc/9503024.

    Google Scholar 

  14. S. Carlip, Quantum Gravity in (2+1) Dimensions, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  15. E. Celeghini and R. Giachetti, The three dimensional euclidean quantum group E(3) Q and its R-matrix, J. Math. Phys. 32 (1991), 1159–1165.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Chari and A. Pressley Quantum Groups, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  17. R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, The operator algebra of orbifold models, Commun. Math. Phys. 123 (1989), 485–526.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nucl. Phys. Proc. Suppl. 18B (1990), 60–72.

    MathSciNet  MATH  Google Scholar 

  19. [] V. V. Fock and A. A. Rosly, Poisson structures on moduli of flat connections on Riemann surfaces and r-matrices, ITEP preprint 72–92, 1992, math. QA/9802054.

    Google Scholar 

  20. K. Guruprasad, J. Huebschmann, L. Jeffrey, A. Weinstein, Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J. 89 (1997), 377–412.

    Article  MathSciNet  MATH  Google Scholar 

  21. [] T. H. Koornwinder and N. M. Muller. The quantum double of a (locally) compact group, J. Lie Theory 7 (1997), 33–52; Err. 8 (1998), 187.

    Google Scholar 

  22. T. H. Koornwinder, F. A. Bais and N. M. Muller, Tensor Product Representations of the Quantum Double of a Compact Group, Commun. Math. Phys. 198 (1998), 157–186.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. J. Matschull, On the relation between (2+1) Einstein gravity and Chern-Simons Theory, Class. Quant. Gray. 16 (1999), 2599–2609.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  25. M. Müger, Quantum Double actions on operator algebras and orbifold quantum field theories, Commun. Math. Phys. 191 (1998), 137–181.

    Article  MATH  Google Scholar 

  26. [] N. Muller, Topological interactions and quantum double symmetries, Ph.D. dissertation, University of Amsterdam, 1998.

    Google Scholar 

  27. G. K. Pedersen, C* -algebras and their Automorphism Groups, Academic Press, London, 1979.

    MATH  Google Scholar 

  28. R. W. Sharpe, Differential Geometry, Springer Verlag, New York, 1996.

    Google Scholar 

  29. P. Stachura, Poisson-Lie structures on Poincaré and Euclidean groups in three dimensions, J. Phys. A 31 (1998), 4555–4564.

    Google Scholar 

  30. E. Witten, 2+1 dimensional gravity as an exactly soluble system, Nucl. Phys., B311 (1988), 46–78.

    Article  MathSciNet  Google Scholar 

  31. E. Witten, Quantization of Chern-Simons gauge theory with complex gauge group, Commun. Math. Phys. 137 (1991), 29–66.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Schroers, B.J. (2001). Combinatorial quantization of Euclidean gravity in three dimensions. In: Landsman, N.P., Pflaum, M., Schlichenmaier, M. (eds) Quantization of Singular Symplectic Quotients. Progress in Mathematics, vol 198. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8364-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8364-1_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9535-4

  • Online ISBN: 978-3-0348-8364-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics