Skip to main content

The Bargmann isometry and Gabor-Daubechies wavelet localization operators

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 129))

Abstract

I consider the relationship between Berezin-Toeplitz operators Tφ and the Gabor-Daubechies wavelet localization operators L wφ . For Gaussian“window” wo, it is easy to check that \( \beta L_{\varphi }^{{{{w}_{0}}}}{{\beta }^{{ - 1}}} = {{T}_{\varphi }} \), with β the Bargmann isometry. For more general w, and some interesting classes of “symbols” φ, I discuss some new equivalences of the form \(\beta L_\varphi ^w{\beta ^{ - 1}} = {T_{\left( {I + D} \right)\varphi ,}} \) where D = D(w) is a constant-coefficient linear differential operator with constant term 0. One consequence is that there is a φ of modulus one with L w1φ =0 a for w1 normalized Hermite function with polynomial part of degree one. A detailed discussion of the Bargmann isometry is provided. Proof sketches of new results are provided with details to appear elsewhere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bargmann, On a Hillbert space of analytic functions and an associated integral transform1 Communications on Pure and Applied Mathematics, 14 (1961), 187–214.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. A. Berezin, Covariant and contravariant symbols of operators, Math. USSR Izv., 6 (1972), 1117–1151.

    Article  Google Scholar 

  3. C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Transactions AMS, 301 (1987), 813–829.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. A. Berger and L. A. Coburn, Heat Flow and Berezin-Toeplitz Estimates, American Journal of Mathematics, 116 (1994), 563–590.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Borthwick, Microlocal techniques for semiclassical problems in geometric quantization, Perspectives on Quantization (editors: L. A. Coburn and M. A. Rieffel), Contemporary Math., 214 AMS, Providence, R.I., 1998, 23–37.

    Chapter  Google Scholar 

  6. L. A. Coburn, The measure algebra of the Heisenberg group, Journal of Functional Analysis, 161 (1999), 509–525.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. A. Coburn, On the Berezin-Toeplitz calculus, to appear in Proceedings of the AMS.

    Google Scholar 

  8. L. A. Coburn and J. Xia, Toeplitz algebras and Rieffel deformations, Communications in Mathematical Physics, 168 (1995), 23–38.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Daubechies, Time frequency localization operators: A geometric phase space approach,IEEE Transactions on Information Theory, 34 (1988), 605–612.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Daubechies, The wavelet transform,time-frequency localization and signal analysis, IEEE Transactions on Information Theory, 36 (1990), 961–1005.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series 6, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  12. F. De Mari, H. G. Feichtinger and K. Nowak, Uniform eigenvalue estimates for time-frequency localization operators, preprint.

    Google Scholar 

  13. J. Du and M. W. Wong, Gaussian functions and Daubechies operators, Integral Equations and Operator Theory, 38 (2000), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. G. Feichtinger and K. Nowak, A Szego type theorem for Gabor-Toeplitz localization operators, preprint.

    Google Scholar 

  15. G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, Princeton Univ. Press, Princeton, 1989.

    MATH  Google Scholar 

  16. V. Guillemin, Toeplitz operators in n-dimensions, Integral Equations and Operator Theory, 7 (1984), 145–205.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Szegö, Orthogonal polynomials,AMS Colloquium Publications, 23 AMS, Prov-idence, RI. 1975.

    MATH  Google Scholar 

  18. J. Xia and D. Zheng, Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Coburn, L.A. (2001). The Bargmann isometry and Gabor-Daubechies wavelet localization operators. In: Borichev, A.A., Nikolski, N.K. (eds) Systems, Approximation, Singular Integral Operators, and Related Topics. Operator Theory: Advances and Applications, vol 129. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8362-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8362-7_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9534-7

  • Online ISBN: 978-3-0348-8362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics