Skip to main content

Dysfunction of prejunctional muscarinic M2 receptors: role of environmental factors

  • Chapter
Muscarinic Receptors in Airways Diseases

Abstract

Asthma is characterized by periods of quiescence interrupted by exacerbations. As many as 20% of patients with asthma require hospitalization at some point for these exacerbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, Symington P, O’Toole S, Myint SH, Tyrrell D et al (1995) Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. Br Med J 310: 1225–1229

    Article  CAS  Google Scholar 

  2. Booij-Noord H, Orie NGM, deVries K (1971) Immediate and late bronchial obstructive reactions to inhalation of house dust and protective effect of disodium cromoglycate and prednisolone. J Allergy Clin Immunol 48: 344–53

    Article  PubMed  CAS  Google Scholar 

  3. Krzyzanowski M, Quachenboss JJ, Lebowitz MD (1992) Relation of peak expiratory flow rates and symptoms to ambient ozone. Arch Env Health 47: 107–115

    Article  CAS  Google Scholar 

  4. Stern BR, Raizenne ME, Burnett RT, Jones L, Kearney J, Franklin CA (1994) Air pollution and childhood respiratory health: Exposure to sulfate and ozone in 10 Canadian rural communities. Env Res 66: 125–142

    Article  CAS  Google Scholar 

  5. White MC, Etzel RA, Wilcox WD, Lloyd C (1994) Exacerbations of childhood asthma and ozone pollution in Atlanta. Env Res 65: 56–68

    Article  CAS  Google Scholar 

  6. Fryer AD, Maclagan J (1984) Muscarinic inhibitory receptors in pulmonary parasym-pathetic nerves in the guinea-pig. Br J Pharmacol 83: 973–978

    Article  PubMed  CAS  Google Scholar 

  7. Ito Y, Yoshitomi T (1988) Autoregulation of acetylcholine release from vagus nerve ter-minals through activation of muscarinic receptors in the dog trachea. Br J Pharmacol 93: 636–646

    Article  PubMed  CAS  Google Scholar 

  8. Blaber LC, Fryer AD, Maclagan J (1985) Neuronal muscarinic receptors attenuate vagally induced contraction of feline bronchial smooth muscle. Br J Pharmacol 86: 723–728

    Article  PubMed  CAS  Google Scholar 

  9. Killingsworth CR, Mingfu Y, Robinson NE (1992) Evidence for the absence of a func-tional role for muscarinic M2 inhibitory receptors in cat trachea in vivo; contrast with in vitro results. Br J Pharmacol 105: 263–270

    Article  PubMed  CAS  Google Scholar 

  10. Aas P, Maclagan J (1990) Evidence for prejunctional M2 muscarinic receptors in pulmonary cholinergic nerves of the rat. Br J Pharmacol 101: 73–76

    Article  PubMed  CAS  Google Scholar 

  11. Minette P, Barnes PJ (1988) Prejunctional inhibitory muscarinic receptors on cholinergic nerves in human and guinea-pig airways. J Appl Physiol 64: 2532–2537

    PubMed  CAS  Google Scholar 

  12. Ayala LE, Ahmed T (1989) Is there loss of a protective muscarinic receptor in asthma? Chest 96: 1285–1291

    Article  PubMed  CAS  Google Scholar 

  13. Minette PJ, Lammers JWJ, Dixon CMS, McCusker MT, Barnes PJ (1989) A muscarinic agonist inhibits reflex bronchoconstriction in normal but not asthmatic subjects. J Appl Physiol 67: 2461–2465

    PubMed  CAS  Google Scholar 

  14. Okayama M, Shen T, Midorikawa J, Lin JT, Inoue H, Takishima T, Shirato K (1994) Effect of pilocarpine on propranolol-induced bronchoconstriction in asthma. Am J Respir Crit Care Med 149: 76–80

    PubMed  CAS  Google Scholar 

  15. Fryer AD, Jacoby DB (1991) Parainfluenza virus infection damages inhibitory M2 muscarinic receptors on pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 102: 267–271

    Article  PubMed  CAS  Google Scholar 

  16. Fryer AD, Wills-Karp M (1991) Dysfunction of M2 muscarinic receptors in pulmonary parasympathetic nerves after antigen challenge in guinea-pigs. J App! Physiol 71: 2255–2261

    CAS  Google Scholar 

  17. Fryer AD, Jacoby DB (1992) Function of pulmonary M2 muscarinic receptors in antigen challenged guinea-pigs is restored by heparin and poly-l-glutamate. J Clin Invest 90: 2292–2298

    Article  PubMed  CAS  Google Scholar 

  18. Schultheis A, Bassett D, Fryer A (1994) Ozone-induced airway hyperresponsiveness and loss of neuronal M2 muscarinic receptor function. J Appl Physiol 76: 1088–1097

    PubMed  CAS  Google Scholar 

  19. Boushey H, Holtzman M (1985) Experimental airway inflammation and hyperreactivity; searching for cells and mediators. Am Rev Respir Dis 131: 312–313

    PubMed  CAS  Google Scholar 

  20. Buckner CK, Songsiridej V, Dick EC, Busse WW (1985) In vivo and in vitro studies of the use of the guinea pig as a model for virus-provoked airway hyperreactivity. Am Rev Respir Dis 132: 305–310

    PubMed  CAS  Google Scholar 

  21. McCaig DJ (1987) Comparison of autonomic responses in the trachea isolated from normal and albumin-sensitive guinea-pigs. Br J Pharmacol 92: 809–816

    Article  PubMed  CAS  Google Scholar 

  22. Santing RE, Pasman Y, Olymulder CG, Roffel AF, Meurs H, Zaagsma J (1995) Contribution of a cholinergic reflex mechanism to allergen-induced bronchial hyperreactivity in permanently instrumented, unrestrained guinea-pigs. Br J Pharmacol 114: 414–418

    Article  PubMed  CAS  Google Scholar 

  23. Costello RW, Evans CE, Yost BL, Belmonte KE, Gleich GJ, Jacoby DB, Fryer AD (1999) Antigen-induced hyperreactivty to histamine: role of the vagus nerve and eosinophils. Am J Physiol 276: L709–L714

    PubMed  CAS  Google Scholar 

  24. Santing RE, Hoekstra Y, Pasman Y, Zaagsma J, Meurs H (1994) The impportance of eosinophil activation for the development of allergen-induced bronchial hyperreactivity in conscious, unrestrained guinea pigs. Clin Exp Allergy 24: 1157–1163

    PubMed  CAS  Google Scholar 

  25. Elbon CL, Jacoby DB, Fryer AD (1995) Pretreatment with an antibody to interleukin-5 prevents loss of pulmonary M2 muscarinic receptor function in antigen-challenged guinea-pigs. Am J Respir Cell Mol Biol 12: 320–328

    PubMed  CAS  Google Scholar 

  26. Fryer AD, Costello RW, Yost BL, Lobb RR, Tedder TF, Steeber DA, Bochner BS (1997) Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest 99: 2036–44

    Article  PubMed  CAS  Google Scholar 

  27. Peterson GL, Rosenbaum LC, Broderick DJ, Schimerlik MI (1986) Physical properties of the purified cardiac muscarinic acetylcholine receptor. Biochemistry 25: 3189–3202

    Article  PubMed  CAS  Google Scholar 

  28. Hu J, Wang S-Z, Forray C, El-Fakahany EE (1992) Complex allosteric modulation of cardiac muscarinic receptors by protamine: a potential model for putative endogenous ligands. Mol Pharmacol 42: 311–324

    PubMed  CAS  Google Scholar 

  29. Jacoby DB, Gleich GJ, Fryer AD (1993) Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest 91: 1314–1318

    Article  PubMed  CAS  Google Scholar 

  30. Fryer A, Huang YC, Rao G, Jacoby D, Mancilla E, Whorton R, Piantadosi CA, Kennedy T, Hoidal J (1997) Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung. J Pharmacol Exp Ther 282: 208–19

    PubMed  CAS  Google Scholar 

  31. Evans CM, Jacoby DB, Gleich GJ, Fryer AD, Costello RW (1997) Antibody to eosinophil major basic protein protects M2 receptor function of antigen challenged guinea pigs in vivo. J Clin Invest 100: 2254–2262

    Article  CAS  Google Scholar 

  32. Costello RW, Schofield BH, Kephart GM, Gleich GJ, Jacoby DB, Fryer AD (1997) Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function. Am J Physiol 273: L93–103

    PubMed  CAS  Google Scholar 

  33. Costello R, Fryer A, Belmonte K, Jacoby D (1998) Effects of tachykinin NK1 receptor antagonists on vagal hyperreactivity and neuronal M2 muscarinic receptor function in antigen-challenged guinea-pigs. Br J Pharmacol 124: 267–276

    Article  PubMed  CAS  Google Scholar 

  34. Evans CM, Jacoby DB, Gleich GJ, Fryer AD (1999) Substance P-induced hyperreactivity is caused by eosinophil major basic protein and M2 receptor dysfunction. Am J Respir Crit Care Med 159: A280

    Google Scholar 

  35. Evans CM, Fryer AD, Jacoby DB (1998) Eotaxin mRNA in primary cultures of parasympathetic nerves from guinea pig tracheas. Am J Respir Crit Care Med 157: A599

    Google Scholar 

  36. Welliver RC (1983) Upper respiratory infections in asthma. J Allergy Clin Immunol 72: 341–346

    Article  PubMed  CAS  Google Scholar 

  37. Empey DW, Laitinen LA, Jacobs L, Gold WM, Nadel JA (1976) Mechanisms of bronchial hyperreactivity in normal subjects following upper respiratory tract infection. Am Rev Respir Dis 113: 523–527

    Google Scholar 

  38. Fryer AD, Yarkony KA, Jacoby DB (1994) The effect of leukocyte depletion on pulmonary M2 muscarinic receptor function in parainfluenza virus-infected guinea-pigs. Br J Pharmacol 112: 588–594

    Article  PubMed  CAS  Google Scholar 

  39. Gies J-P, Landry Y (1988) Sialic acid is selectively involved in the interaction of agonists with M2 muscarinic acetylcholine receptors. Biochem Biophys Res Comm 150: 673–680

    Article  PubMed  CAS  Google Scholar 

  40. Scheid A, Caliguiri LA, Compans RW, Choppin PW (1972) Isolation of paramyxovirus glycoproteins Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 50: 640–652

    Article  PubMed  CAS  Google Scholar 

  41. Boulan ER, Pendergast M (1980) Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20: 45–54

    Article  Google Scholar 

  42. Fryer AD, El-Fakahany EE, Jacoby DB (1990) Parainfluenza virus type 1 reduces the affinity of agonists for muscarinic receptors in guinea-pig heart and lung. Eur J Pharmacol 181: 51–58

    Article  PubMed  CAS  Google Scholar 

  43. Jacoby DB, Xiao HQ, Lee NH, Chan-Li Y, Fryer AD (1998) Virus-and interferon-induced loss of inhibitory M2 muscarinic receptor function and gene expression in guinea-pig airway parasympathetic neurons. J Clin Invest 102: 242–248

    Article  PubMed  CAS  Google Scholar 

  44. Jacoby DB, Chani-Li Y, Xiao HQ, Fryer AD (1998) Dexamethasone increases M2 muscarinic receptor expression and decreases acetylcholine release in cultured airway parasympathetic neurons. Am J Respir Crit Care Med 157: A715

    Google Scholar 

  45. Adamko DJ, Yost BL, Gleich GJ, Fryer AD F, Jacoby DB (1999) Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, M2 muscarinic receptor dysfunction, and antiviral effects. J Exp Med 190: 1465–1478

    Article  PubMed  CAS  Google Scholar 

  46. Walsh JJ, Dietlein LF, Low FN, Burch GE, Mogabgab WJ (1960) Bronchotracheal response in human influenza. Arch Int Med 108: 376–388

    Article  Google Scholar 

  47. Frigas E, Loegering DA, Solley GO, Farrow GM, Gleich GJ (1981) Elevated levels of the eosinophil granule MBP in the sputum of patients with bronchial asthma. Mayo ain Proc 56: 345–353

    CAS  Google Scholar 

  48. Coyle AJ, Erard F, Bertrand C, Walti S, Pircher H, Le GG (1995) Virus-specific CD8+ cells can switch to interleukin 5 production and induce airway eosinophilia. J Exp Med 181: 1229–33

    Article  PubMed  CAS  Google Scholar 

  49. Yost BL, Gleich GJ, Fryer AD (1999) Ozone-induced hyperresponsiveness and blockade of M2 muscarinic receptors by eosinophil major basic protein. J Appl Physiol 87: 1272–1278

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Adamko, D.J., Fryer, A.D., Jacoby, D.B. (2001). Dysfunction of prejunctional muscarinic M2 receptors: role of environmental factors. In: Zaagsma, J., Meurs, H., Roffel, A.F. (eds) Muscarinic Receptors in Airways Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8358-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8358-0_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9532-3

  • Online ISBN: 978-3-0348-8358-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics