Skip to main content

Functional roles of postjunctional muscarinic M2 receptors in airway smooth muscle

  • Chapter
Book cover Muscarinic Receptors in Airways Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

  • 84 Accesses

Abstract

Acetylcholine, the main neurotransmitter of the parasympathetic nervous system, acts by binding to two major receptor types, the nicotinic and the muscarinic receptor classes. Muscarinic receptors are composed of five subtypes, M1—M5, encoded by intronless genes, with endogenously expressed correlates in several tissues, including the respiratory tract [1]. Given this diversity, it has been a challenge to define the physiological roles for each subtype. As discussed below, a paucity of selective ligands remains for use as defining pharmacological tools, but gene-targeting techniques, such as receptor antisense and transgenic animals, could assist in this respect. While the antisense techniques have not met with much success in the examination of smooth muscle function, it is fair to state that this has not been exten-sively studied. Alternatively, transgenic mice, lacking muscarinic M1, M2, M4 or M5 receptor genes, have now been constructed but, as yet, no studies have been reported relating to airway smooth muscle function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caulfield MO, Birdsall NJM (1990) International Union of Pharmacology. XVII Classi-fication of muscarinic acetylcholine receptors. Pharmacol Rev 50: 279–290

    Google Scholar 

  2. Eglen RM, Watson N (1996) Selective muscarinic receptor agonists and antagonists. Pharmacol Toxicol 78: 59–68

    Article  PubMed  CAS  Google Scholar 

  3. Barlow RB, Franks FM, Pearson JDM (1972) A comparison of the affinities of antago-nist for acetylcholine receptors in the ileum, bronchial muscle and iris of the guinea pig. Br J Pharmacol 46: 300–312

    Article  PubMed  CAS  Google Scholar 

  4. Eglen RM, Reddy H, Watson N, Challis RAJ (1994) Muscarinic acetylcholine receptor subtypes in smooth muscle. Trends Pharmacol Sci 15: 114–119

    Article  PubMed  CAS  Google Scholar 

  5. Roffel AF, Elzinga CRS, Van Amsterdam RGM, De Zeeuw RA, Zaagsma J (1988) Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function. Eur J Pharmacol 153: 73–82

    Article  PubMed  CAS  Google Scholar 

  6. Roffel AF, Meurs H, Elzinga CRS, Zaagsma J (1989) Characterization of the muscarinic receptor subtype involved in phosphoinositide metabolism in bovine tracheal smooth muscle. Br J Pharmacol 99: 293–296

    Article  Google Scholar 

  7. Lucchesi PA, Scheid CR, Romano FD, Kargacin ME, Mullikin-Kilpatrick D, Yamaguchi H, Honeyman TW (1990) Ligand binding and G protein coupling of muscarinic receptors in airway smooth muscle. Am J Physiol 258: C730–C738

    PubMed  CAS  Google Scholar 

  8. Roets E, Burvenich C, Roberts M (1992) Muscarinic receptor subtypes, β-adrenoceptors and cAMP production in the trachealis smooth muscle of conventional and double-muscled calves. Vet Res Commun 16: 465–467

    Article  PubMed  CAS  Google Scholar 

  9. Yang CM (1991) Characterization of muscarinic receptors in dog tracheal smooth mus-cle cells. J Auton Pharmacol 11: 51–61

    Article  PubMed  Google Scholar 

  10. Fernandes LB, Fryer AD, Hirshman CA (1992) M2 muscarinic receptors inhibit isoproterenol-induced relaxation of canine airway smooth muscle. J Pharmacol Exp Ther 262: 119–126

    PubMed  CAS  Google Scholar 

  11. Haddad EB, Landry Y Gies J-P (1991) Muscarinic receptor subtypes in guinea-pig airways. Am J Physiol. 261: L327–L333

    PubMed  CAS  Google Scholar 

  12. Mahesh VK, Nunan LM, Halonen M, Yamamura HI, Palmer JD, Bloom JW (1992) A minority of muscarinic receptors mediated rabbit tracheal smooth muscle contraction. Am J Respir Cell Mol Biol 6: 279–286

    PubMed  CAS  Google Scholar 

  13. Haddad EB, Mak JCW, Hislop A, Haworth SG, Barnes PJ (1994) Characterization of muscarinic receptor subtypes in pig airways: radioligand binding and northern blotting studies. Am J Physiol 266: L642–L648

    PubMed  CAS  Google Scholar 

  14. Emala CW, Aryana A, Levine MA, Yasuda RP, Satkus SA, Wolfe BB, Hirshman CA (1995) Expression of muscarinic receptor subtypes and M2-muscarinic inhibition of adenylyl cyclase in lung. Am J Physiol 268: L101–L107

    PubMed  CAS  Google Scholar 

  15. Eglen RM, Hegde SS, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48: 531–565

    PubMed  CAS  Google Scholar 

  16. Wang Y-X, Kotlikoff, MI (1998) Calcium release and calcium-activated chloride channels in airway smooth muscle. Am J Respir Crit Care Med 158: S109–S114

    PubMed  Google Scholar 

  17. Koenig SM, Mitchel RW, Kelly E, White SR, Leff AR, Popovich KJ (1989) β-adrenergic relaxation of dog trachealis: contractile agonist-specific interaction. J Appl Physiol 67: 181–185

    PubMed  CAS  Google Scholar 

  18. Torphy TJ (1988) Differential relaxant effects of isoproterenol on methacholine-versus leukotriene D4-induced contraction in the guinea-pig trachea. Eur J Pharmacol 102: 549–553

    Article  Google Scholar 

  19. Van Amsterdam RGM, Meurs H, Brouwer F, Posterma JB, Timmermans A, Zaagsma J (1989) Role of phosphoinositol metabolism in functional antagonism of airway smooth muscle contraction by b-adrenoceptor agonists. Eur J Pharmacol 172: 175–183

    Article  PubMed  Google Scholar 

  20. Offer GJ, Chilvers ER, Nahorski SR (1991) β-adrenoceptor-induced inhibition of muscarinic receptor-stimulated phosphoinositide metabolism is agonist-specific in bovine trachea smooth muscle. Eur J Pharmacol. 207: 243–248

    Article  PubMed  CAS  Google Scholar 

  21. Ehlert FJ, Sawyer GW, Esqueda EE (1999) Contractile role of M2 and M3 muscarinic receptors in gastrointestinal smooth muscle. Life Sci 64: 375–380

    Article  Google Scholar 

  22. Jones CA, Madison JM, Tom-Moy M, Brown JK (1987) Muscarinic cholinergic inhibition of adenylate cyclase in smooth muscle. Am J Physiol 235: C97–C104

    Google Scholar 

  23. Sankary RM, Jones CA, Madison JM, Brown JK (1988) Muscarinic cholinergic inhibition of cyclic AMP in airway smooth muscle: Role of pertussis toxin-sensitive protein. Am Rev Respir Dis 138:145–150

    Article  PubMed  CAS  Google Scholar 

  24. Yang CM, Chou S-P, Sung T-C (1991) Muscarinic receptor subtypes coupled to generation of different second messengers in isolated tracheal smooth muscle cells. Br J Pharmacol 104: 613–618

    Article  PubMed  CAS  Google Scholar 

  25. Pyne NJ, Grady MW, Shehnaz D, Stevens PA, Pyne S, Rodger IW (1992) Muscarinic blockade of β-adrenoceptor-stimulated adenylyl cyclase; the role of stimulatory and inhibitory guanine-nucleotide binding regulatory proteins (Gs and Gi). Br J Pharmacol 107: 881–887

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell RW, Koenig SM, Popovich KJ, Kelly E, Tallet, Leff AR (1993) Pertussis toxin augments P-adrenoceptor relaxation of muscarinic contraction canine trachealis. Am Rev Respir Dis 147: 327–331

    PubMed  CAS  Google Scholar 

  27. Watson N, Eglen RM (1994) Effect of muscarinic M2 and M3 receptor stimulation and antagonism on responses to isoprenaline of guinea-pig trachea in vitro. Br J Pharmacol 112: 179–187

    Article  PubMed  CAS  Google Scholar 

  28. Widdop S, Daykin K, Hall IP (1993) Expression of muscarinic M2 receptors in cultured human airway smooth muscle cells. Am J Respir Cell Mol Biol 9: 541–546

    PubMed  CAS  Google Scholar 

  29. Naline E, Sarria B, Blanc M, Molimard M, Advenier C, Morcillo EJ (1997) Influence of muscarinic M2 receptors on the acetylcholine-isoprenaline functional antagonism in the human isolated bronchus. Am J Respir Crit Care Med 155: A57

    Google Scholar 

  30. Meurs H, Elzinga CRS, De Boer REP, Van Amsterdam RGM, Brouwer F, Zaagsma J (1992) Muscarinic receptor mediate inhibition of adenylyl cyclase and its role in the functional antagonism of cholinergic airway smooth muscle contraction by β-agonist. Am Rev Respir Dis 145: A438

    Google Scholar 

  31. Ostrom RS, Ehlert FJ (1998) M2 muscarinic receptors inhibit forskolin-but not isoproterenol-mediated relaxation in bovine tracheal smooth muscle. J Pharmacol Exp Ther 286: 234–242

    PubMed  CAS  Google Scholar 

  32. Torphy TJ (1994) β-adrenoceptors, cAMP and airway smooth muscle relaxation: challenges to the dogma. Trends Pharmacol Sci 15: 370–374

    Article  PubMed  CAS  Google Scholar 

  33. Roffel AF, Meurs H, Elzinga CRS, Zaagsma J (1993) Muscarinic M2 receptors do not participate in the functional antagonisms between methacholine and isoprenaline in guinea-pig tracheal smooth muscle. Eur J Pharmacol 249: 235–238

    Article  PubMed  CAS  Google Scholar 

  34. Watson N, Magnussen H, Rabe KF (1995) Antagonism of β-adrenoceptor-mediated relaxations of human bronchial smooth muscle by carbachol. Eur J Pharmacol 275: 307–310

    Article  PubMed  CAS  Google Scholar 

  35. Reddy H, Watson N, Ford APDW, Eglen RM (1995) Characterization of the interaction between muscarinic M2 receptors and β-adrenoceptor subtypes in guinea-pig isolated ileum. Br J Pharmacol 114: 49–56

    Article  PubMed  CAS  Google Scholar 

  36. Thomas EA, Baker S, Ehlert FJ (1996) Functional role of the M2 muscarinic receptor in smooth muscle of guinea-pig ileum. Mol Pharmacol 4: 102–110

    Google Scholar 

  37. Eglen RM, Reddy H, Watson N (1994) Selective inactivation of muscarinic receptor subtypes. Int J Biochem 26: 1357–1368

    Article  PubMed  CAS  Google Scholar 

  38. Eglen RM, Peele B, Pulido-Rios MT, Leung E (1996) Functional interactions between muscarinic M2 receptors and 5-hydroxytryptamine (5HT)4 and β3-adrenoceptors in isolated eosophageal muscularis mucosae of the rat. Br J Phrmacol 119: 595–601

    Article  CAS  Google Scholar 

  39. Hegde SS, Choppin A, Bonhaus S, Briaud S, Loeb, TM Moy, Loury D, Eglen RM (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol 120: 1409–1418

    CAS  Google Scholar 

  40. Thomas EA, Ehlert FJ (1996) Involvement of the M2 muscarinic receptor in contractions of guinea-pig trachea, guinea-pig esophagus and rat fundus. Biochem Pharmacol 51: 779–788

    Article  PubMed  CAS  Google Scholar 

  41. Watson N, Reddy H, Eglen RM (1995) Characterization of muscarinic receptor and badrenoceptor interactions in guinea-pig oesophageal muscularis mucosae. Eur J Pharmacol 275: 307–310

    Article  PubMed  CAS  Google Scholar 

  42. Watson N, Reddy H, Eglen RM (1995) Role of muscarinic M2 and M3 receptors in guinea-pig trachea: effects of receptor alkylation. Eur J Pharmacol 278: 195–201

    Article  PubMed  CAS  Google Scholar 

  43. Togashi H, Emala CW, Hall IP, Hirshman CA (1998) Carbachol-induced actin reorganization involves Gi activation of Rho in human airway smooth muscle cells. Am J Physiol 274: L803–L809

    PubMed  CAS  Google Scholar 

  44. Hirshman CA, Togashi H, Shao D, Emala CW (1998) Gαi-2 is required for carbacholinduced stress fiber formation in human airway smooth muscle cells. Am J Physiol 275: L911–L916

    PubMed  CAS  Google Scholar 

  45. Wang P, Bitar KN (1998) Rho A regulates sustained smooth muscle contraction through cytoskeletal reorganization of HSP27. Am J Physiol 275: G1454–G1462

    PubMed  CAS  Google Scholar 

  46. Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249: 635–640

    Article  PubMed  CAS  Google Scholar 

  47. Hirshman C, Lande B, Croxtomn TL (1999) Role of M2 muscarinic receptors in airway smooth muscle contraction. Life Sci 64: 443–448

    Article  PubMed  CAS  Google Scholar 

  48. Keller J, Schmidt M, Hussein B, Riimenapp U, Kakobs KH (1997) Muscarinic receptor-stimulated cytosol-membrane translocation of RhoA. FEBS Letts 403: 299–302

    Article  CAS  Google Scholar 

  49. Hirata K, Kikuchi A, Sasaki T, Kuroda S, Kaibuchi K, Matsuura Y, Seki H, Saida K, Takai Y (1992) Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem 267: 8719–8722

    PubMed  CAS  Google Scholar 

  50. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K et al (1996) Regulation of myosin phosphatease by Rho and Rho-associated kinase (Rho-Kinase). Science 273: 245–248

    Article  PubMed  CAS  Google Scholar 

  51. Bussey H (1996) Cell shape determination: A pivotal role for Rho. Science 272: 224–225

    Article  PubMed  CAS  Google Scholar 

  52. Eglen RM, Montgomery WW, Dainty IA, Dubuque LK, Whiting RL (1988) The interaction of methoctramine and himbacine at atrial, smooth muscle and endothelial muscarinic receptors in vitro. Br J Pharmacol 95: 1031–1038

    Article  CAS  Google Scholar 

  53. Eglen RM, Huff MM, Montgomery WW, Whiting RL (1988) Differential effects of pertussis toxin on muscarinic responses in isolated atria and smooth muscle. J Auton Pharmacol 8: 29–37

    Article  PubMed  CAS  Google Scholar 

  54. Christie MJ, North RA (1988) Control of ion conductances by muscarinic receptors. Trends Pharmacol Sci Suppl: 30–34

    Google Scholar 

  55. Edwards G, Weston AH (1990) Potassium channel openers and vascular smooth muscle relaxation. Pharmac Ther 48: 237–258

    Article  CAS  Google Scholar 

  56. Yamade M, Inanobe A, Kurchi Y (1998) G protein regulation of potassium ion channels. Pharmacol Rev 50: 723–757

    Google Scholar 

  57. Jones TR, Charette L, Garcia ML, Kaczorowski GJ (1990) Selective inhibition of relaxation of guinea-pig trachea by charybdotoxin, a potent Ca2+-activated K+ channel inhibitor. J Pharmacol Exp Ther 255: 697–706

    PubMed  CAS  Google Scholar 

  58. Miura M, Belvisi MG, Stretton CD, Yacoub MH, Barnes PJ (1992) Role of potassium channels in bronchodilator responses in human airways. Am Rev Respir Dis 146: 132–136

    PubMed  CAS  Google Scholar 

  59. Wang Y-X, Fleishmann BK, Kotlikoff, MI (1997) Modulation of maxi-K+ channels by voltage dependent Ca2+ channels and methacholine in single airway myocytes. Am J Physiol 272: C1151–C1159

    PubMed  CAS  Google Scholar 

  60. Wang Y-X, Kotlikoff MI (1997) Muscarinic signaling pathway for calcium release and calcium-activated chloride current in smooth muscle. Am J Physiol 273: C509–0519

    PubMed  CAS  Google Scholar 

  61. Kume H, Kotlikoff MI (1991) Muscarinic inhibition of single KCa channels in smooth muscle cells by a pertussis-sensitive G protein. Am J Physiol. 261: C1204–C1209

    PubMed  CAS  Google Scholar 

  62. Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff MI (1994) Beta-adrenergic agonists: regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest 93: 371–379-C

    Article  PubMed  CAS  Google Scholar 

  63. Kume H, Mikawa K, Takagi K, Kotlikoff MI (1995) Role of G proteins and KCa channels in the muscarinic regulation and β-adrenergic of tracheal smooth muscle. Am J Physiol 286: L221–L229

    Google Scholar 

  64. Kotlikoff MI, Wang Y-X (1998) Calcium release and calcium-activated chloride channels in airway smooth muscle cells. Am J Respirt Crit Care Med 158: S109–S114

    CAS  Google Scholar 

  65. Janssen LJ, Sims SM (1992) Acetylcholine activates non-selective cation and chloride conductances in canine and guinea pig tracheal myocytes. J Physiol 453: 197–218

    PubMed  CAS  Google Scholar 

  66. Janssen LJ, Sims SM (1993) Emptying and refilling of Ca2+ store in tracheal myocytes as indicated by Ach-evoked currents and contraction. Am J Physiol 265: C877–C886

    PubMed  CAS  Google Scholar 

  67. Wade GR, Barbera J, Sims SM (1996) Cholinergic inhibition of Ca2+ current in guinea pig gastric and tracheal smooth muscle cells. J Physiol 491: 307–319

    PubMed  CAS  Google Scholar 

  68. Pucovsky V, Zholos AV, Bolton TB (1998) Muscarinic cation current and suppression of Ca2+ current in guinea-pig ileal smooth muscle cells. Eur J Pharmacol 346: 323–330

    Article  PubMed  CAS  Google Scholar 

  69. Zholos AV, Bolton TB (1997) Muscarinic receptor subtypes controlling the cation current in guinea-pig ileal smooth muscle. Br J Pharmacol 122: 885–893

    Article  PubMed  CAS  Google Scholar 

  70. Wang Y-X, Fleishmann BK Kotlikoff MI (1997) M2 receptor activation of nonselective cation channels in smooth muscle cells: calcium and Gi/Go requirements. Am J Physiol 273: 42: C500–0508

    PubMed  CAS  Google Scholar 

  71. Byrne NG, Large WA (1987) Membrane mechanism associated with muscarinic recep-for activation in single cells freshly dispersed from the rat anococcygeus muscle. Br J Pharmacol 92: 371–379

    Article  PubMed  CAS  Google Scholar 

  72. Borda ES, Leiros CP, Camusso JJ, Bacman S, Sterin-Borda L (1997) Differential cholinoceptor subtype-dependent activation of signal transduction pathways in neonatal versus adult rat atria. Biochem Pharmacol 53: 959–967

    Article  PubMed  CAS  Google Scholar 

  73. Poller U, Nedelka G, Radke J, Pönicke K, Brodde O-E (1997) Age-dependent changes in cardiac muscarinc receptor function in healthy volunteers. JA CC 29:187–193

    CAS  Google Scholar 

  74. Michalek H, Fontana S, Pintor A (1993) Age-related changes in muscarinic receptor and post-receptor mechanisms in brain and ileum strips of rats. Acta Neurobiol Exp 53: 93–101

    CAS  Google Scholar 

  75. Latifpour A, Kondo S, O’Hollaren B, Morita T, Weiss RM (1990) Autonomic receptors in urinary tract: sex and age differences. J Pharmacol Exp Ther 253: 661–667

    PubMed  CAS  Google Scholar 

  76. Braverman A, Legos J, Young W, Luthin G, Ruggieri M (1999) M2 receptors in genitourinary smooth muscle pathology. Life Sci 64: 429–436

    Article  PubMed  CAS  Google Scholar 

  77. Hislop AA, Mak JCW, Reader JA, Barnes PJ, Haworth SG (1998) Muscarinic receptor subtypes in the porcine lung during postnatal development. Eur J Pharmacol 359: 211–221

    Article  PubMed  CAS  Google Scholar 

  78. Schramm CM, Arjona NC, Grunstein MM (1995) Role of muscarinic M2 receptors in regulation β-adrenergic responsiveness in maturing rabbit airway smooth muscle. Am J Physiol 269: L783–L790

    PubMed  CAS  Google Scholar 

  79. Hakonarson H, Herrick DJ, Grunstein MM (1995) Mechanism of impaired β-adrenoceptor responsiveness in atopic sensitized airway smooth muscle. Am J Physiol 269: L645–L652

    PubMed  CAS  Google Scholar 

  80. Emala CW, Aryana A, Levine MA, Yasuda RP, Satkus SA, Wolfe BB, Hirshman CA (1995) Basenji-greyhound dog; increased m2 muscarinic receptor expression in trachealis muscle. Am J Physiol 268: L935–L940

    PubMed  CAS  Google Scholar 

  81. Goldie RG, Spina D, Henry PJ, Lulich KM, Paterson JW (1986) In vitro responsiveness of human asthmatic bronchus to carbachol, histamine β-adrenoceptor agonist and theophyline. Br J Clin Pharmacol 22: 669–676

    Article  PubMed  CAS  Google Scholar 

  82. Haddad E-B, Rousell J (1998) Regulation of the expression and function of the M2 muscarinic receptor. Trends Pharmacol Sci 19: 322–327

    Article  CAS  Google Scholar 

  83. Jackson DA, Nathanson NM (1995) Subtype-specific regulation of muscarinic receptor expresssion and function by heterologous receptor activation. J Biol Chem 270: 22374–22377

    Article  PubMed  CAS  Google Scholar 

  84. Rousell J, Haddad E-B, Mak JCW, Webb BLJ, Giembycz MA, Barnes PJ (1996) β- Adrenoceptor-mediated down-regulation of M2 muscarinic receptors: Role of cyclic adenosine 5’-monophosphate-dependent protein kinase and protein kinase C. Mol Pharmacol 49: 629–635

    PubMed  CAS  Google Scholar 

  85. Plotnick LH, Ducharme FM (1998) Should inhaled anticholinergics be added to β2-agonists for treating acute childhood and adolescent asthma? BMJ 317: 971–977

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Eglen, R.M., Watson, N. (2001). Functional roles of postjunctional muscarinic M2 receptors in airway smooth muscle. In: Zaagsma, J., Meurs, H., Roffel, A.F. (eds) Muscarinic Receptors in Airways Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8358-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8358-0_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9532-3

  • Online ISBN: 978-3-0348-8358-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics