Skip to main content

Novel perspectives in anticholinergic therapy

  • Chapter

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Muscarinic receptors are widely distributed throughout the body and, when activated, serve a variety of important regulatory functions [1, 2]. Considering their physiological importance, comparatively few muscarinic agonists or antagonists constitute part of established pharmacotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goyal RK (1989) Muscarinic receptor subtypes - physiology and clinical implications.N Engl J Med 321: 1022–1029

    PubMed  CAS  Google Scholar 

  2. Eglen RM, Sharath SH, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48: 531–565

    PubMed  CAS  Google Scholar 

  3. Gross NJ, Skorodin MS (1984) State of the art, anticholinergic, antimuscarinic bron-chodilators. Am Rev Respir Dis 129: 856–870

    PubMed  CAS  Google Scholar 

  4. Gross NJ (1988) Ipratropium bromide. N Engl J Med 319: 486–494

    PubMed  CAS  Google Scholar 

  5. Bauer R, Banholzer R (1993) Pharmacology of quaternary anticholinergic drugs. In:Gross NJ (ed): Anticholinergic therapy in obstructive airways disease. Franklin Scientific Publications, London, 105–115

    Google Scholar 

  6. Bauer R, Kuhn F-J, Stockhaus K, Wick H (1976) Allgemeine Pharmakologie und sekretionshemmende Wirkung von (8r)-3α-Hydroxy-8-isopropyl-lαH,5αH-tropaniumbromid(±)-tropat (Ipratropiumbromid). Arzneim-Forsch (Drug Res) 26: 974–980

    CAS  Google Scholar 

  7. Bauer R, Püschmann S, Wick H (1976) Wirkung von (8r)-3α-Hydroxy-8-isopropyl1αH,5αH-tropaniumbromid-(±)-tropat (Ipratropiumbromid) out Spasmen des Tracheobronchialbaumes und die Bronchialsekretion, die Speichelsekretion, EKG und Herzfrequenz. Arzneim-Forsch (Drug Res) 26: 981–985

    CAS  Google Scholar 

  8. Ensing K, de Zeeuw RA, Nossent GD, Koeter GH, Cornelissen PJG (1989) Pharmaco-kinetics of ipratropium bromide after single dose inhalation and oral and intravenous administration. Eur J Pharmacol 36: 189–194

    CAS  Google Scholar 

  9. Tennant W, MacGreggor T, Adelglass J, Dockhorn R, Korpalski D, Wecker M (1997) Pharmakokinetic assessment following administration of Atrovent® nasal spray 0.06% (ANS) in a pediatric population with naturally aquired common colds. Am J Respir Crit Care Med 155 (part 2): A713

    Google Scholar 

  10. Tashkin DP, Ashutosh K, Bleeker ER, Britt EJ, Cugell DW, Cummiskey JM, DeLorenzo L, Gilman MJ, Gross GN, Gross NJ et al. (1986) Comparison of the anticholinergic bronchodilator ipratropium bromide with metaproterenol in chronic obstructive pulmonary disease. Am J Med 81 (Suppl 5A): 81–90

    CAS  Google Scholar 

  11. Higgins BG, Powell RM, Cooper S, Tattersfield AE (1991) Effect of salbutamol and ipratropium bromide on airway calibre and bronchial reactivity in asthma and chronic bronchitis. Eur Respir J 4: 415–420

    PubMed  CAS  Google Scholar 

  12. Braun RS and Levy SF (1991) Comparison of ipratropium bromide and albuterol in chronic obstructive pulmonary disease: a three-center study. Am J Med 91 (Suppl 4A): 28S–32S

    CAS  Google Scholar 

  13. Braun SR, McKenzie WN, Copeland C, Knight L, Ellersieck M (1989) A comparison of the effect of ipratropium and albuterol in the treatment of chronic obstructive airway disease. Arch Int Med 149: 544–547

    CAS  Google Scholar 

  14. Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, Conway WA, Enright PL, Kanner RE, O’Hara P et al (1994) Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The lung health study. JAMA 272: 1497–1504

    PubMed  CAS  Google Scholar 

  15. Rennard SI, Serby CW, Ghafouri Mo, Johnson PA, Friedman M (1996) Extended therapy with ipratropium is associated with improved lung function in patients with COPD. Chest 110: 62–70

    PubMed  CAS  Google Scholar 

  16. Yang CM, Farley JM, Dwyer TM (1988) Muscarinic stimulation of submucosal glands in swine trachea. J Appl Physiol 64: 200–209

    CAS  Google Scholar 

  17. Mak JCW, Barnes PJ (1990) Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Resp Dis 141: 1559–1568

    PubMed  CAS  Google Scholar 

  18. Mak JCW, Baraniuk JN, Barnes PJ (1992) Localisation of muscarinic receptor subtype mRNAs in human lung. Am J Respir Cell Mol Biol 7: 344–348

    PubMed  CAS  Google Scholar 

  19. Ishihara H, Shimura S, Satoh M, Masuda T, Nonaka H, Kase H, Sasaki T, Sasaki H, Takishima T, Tamura K (1992) Muscarinic receptor subtypes in feline tracheal submucosal gland secretion. Am J Physiol 262: L223–L228

    CAS  Google Scholar 

  20. Lopez-Vidriero MT, Costello J, Clark TJH, Das I, Keal EE, Reid L (1975) Effect of atropine on sputum production. Thorax 30: 543–547

    PubMed  CAS  Google Scholar 

  21. Taylor RG, Pavia D, Agnew JE, Lopez-Vidriero MT, Newman Sp, Lennard-Jones T, Clarke SW (1986) Effect of four weeks’ high dose ipratropium bromide treatment on lung mucociliary clearance. Thorax 41: 295–300

    PubMed  CAS  Google Scholar 

  22. Pavia D, Lopez-Vidriero MT, Agnew JE, Taylor RG, Eyre-Brook A, Lawton WA, Pellow PGD, Clarke SW (1989) Effect of four-week treatment with oxitropium bromide on lung mucociliary clearance in patients with chronic bronchitis or asthma. Respiration 55: 33–43

    PubMed  CAS  Google Scholar 

  23. Ghafouri MA, Patil KD, Kass I (1984) Sputum changes associated with the use of ipratropium bromide. Chest 86: 387–393

    PubMed  CAS  Google Scholar 

  24. Tamaoki J, Chiyotani A, Tagaya B, Sakai N, Konno K (1994) Effect of long term treatment with oxitropium bromide on airway secretion in chronic bronchitis and panbronchiolitis. Thorax 49: 545–548

    PubMed  CAS  Google Scholar 

  25. Corssen G, Allen CR (1959) Acetylcholine: its significance in controlling ciliary activity of human respiratory epithelium in vitro. J Appl Physiol 14: 901–904

    CAS  Google Scholar 

  26. Disse B, Reichl R, Speck G, Traunecker W, Rominger KL, Hammer R (1993) BA 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci 52: 537–544

    PubMed  CAS  Google Scholar 

  27. Pavia D, Thomson ML (1971) Inhibition of mucociliary clearance from human lung by hyoscine. Lancet 1: 449–450

    PubMed  CAS  Google Scholar 

  28. Yeates DB, Aspin N, Levison H, Jones MT, Bryan AC (1975) Mucociliary tracheal transport rates in man. J Appl Physiol 39: 487–495

    PubMed  CAS  Google Scholar 

  29. Foster WM, Bergofsky EH, Bohning DE, Lippman M Albert RE (1976) Effect of adrenergic agents and their mode of action on mucociliary clearance in man. J App Physiol 41: 146–152

    CAS  Google Scholar 

  30. Annis P, Landa J, Lichtiger M (1976) Effects of atropine on velocity of tracheal mucus in anesthetized patients. Anesthesiology 44: 74–77

    PubMed  CAS  Google Scholar 

  31. Groth ML, Langenback EG, Foster WM (1991) Influence of inhaled atropine on lung mucociliary function in humans. Am Rev Respir Dis 144: 1042–1047

    CAS  Google Scholar 

  32. Ruffin RE, Wolff RK, Dolovich MB, Rossman CM, Fitzgerald JD, Newhouse MT (1978) Aerosol therapy with Sch 1000. Short-term mucociliary clearance in normal and bronchitic subjects and toxicology in normal subjects. Chest 73: 501–506

    PubMed  CAS  Google Scholar 

  33. Nakhosteen JA, Wichtmann G, Petro W, Konietzko N (1980) BeeinfluSt Ipratropiumbromid die mukoziliare Klarfunktion? Prax Pneumol 34: 570–574

    CAS  Google Scholar 

  34. Francis RA, Thomson ML, Pavia D, Douglas RB (1977) Ipratropium bromide: Mucociliary clearance rate and airway resistance in normal subjects. Br J Dis Chest 71: 173–178

    PubMed  CAS  Google Scholar 

  35. Pavia D, Bateman JRM, Sheahan NF, Clarke SW (1979) Effect of ipratropium bromide on mucociliary clearance and pulmonary function in reversible airways obstruction. Thorax 34: 501–507

    PubMed  CAS  Google Scholar 

  36. Thomas VE, O’Connel F, Harrison AJ, Fuller RW (1992) Ipratropium bromide delivered orally by metered dose inhaler does not decrease salivary flow in normal subjects. Br J Clin Pharmac 34: 266–268

    CAS  Google Scholar 

  37. Cugell DW (1986) Clinical pharmacology and toxicology of ipratropium bromide. Am J Med 81 (Suppl 5A): 18–22

    PubMed  CAS  Google Scholar 

  38. Ikeda A, Nishimura K, Koyama H, Izumi, T (1995) Comparative dose-response study of three antcholinergic agents and fenoterol using a metered dose inhaler in patients with chronic obstructive pulmonary disease. Thorax 50: 62–66

    PubMed  CAS  Google Scholar 

  39. Bauer R (1985) Zur Pharmakologie des Bronchospasmolytikums Oxitropiumbromid. Arzneim-Forsch (Drug Res) 35: 435–440

    CAS  Google Scholar 

  40. Ferguson GT, Cherniack RM (1993) Management of chronic obstructive pulmonary disease. N Engl J Med 328: 1017–1022

    PubMed  CAS  Google Scholar 

  41. American Thoracic Society (1995) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152: S77–S120

    Google Scholar 

  42. Siafakas NM, Vermeire P, Pride NB, Paoletti P, Gibson J, Howard P, Yernault JC, Decramer M, Higenbottam, T, Postma DS, Rees, J (1995) Optimal assessment and management of chronic obstructive pulmonary disease (COPD). Eur Respir J 8: 1398–1420

    CAS  Google Scholar 

  43. Moriya H, Takagi Y, Nakanishi T, Hayashi M, Tani T, Hirotsu I (1999) Affinity profiles of various muscarinic antagonists for cloned human muscarinic acetylcholine receptor (MACHR) subtypes and MACHRS in rat heart and submandibular gland. Life Sci 64: 2351–2358

    PubMed  CAS  Google Scholar 

  44. Doods HN (1992) Selective muscarinic antagonists as bronchodilators. Drug News Perspect 5: 345–352

    Google Scholar 

  45. Naito R, Takeuchi M, Morihira K, Hayakawa M, Ikeda K, Shibanuma T, Isomura Y (1998) Selective muscarinic antagonists. II. Synthesis and antimuscarinic properties of biphenylylcarbamate derivatives. Chem Pharm Bull 46: 1286–1294

    PubMed  CAS  Google Scholar 

  46. Gomez A, Bellido I, Sanchez de la Cuesta F (1995) Atropine and glycopyrronium show similar binding patterns to M2 (cardiac) and M3 (submandibular gland) muscarinic receptor subtypes in the rat. Br J Anaesth 74:549–552

    PubMed  CAS  Google Scholar 

  47. Disse B, Speck GA, Rominger KL, Witek ThJ, Hammer R (1999) Tiotropium (SpirivaTM): Mechanistical considerations and clinical profile in obstructive lung disease. Life Sci 64: 457–464

    PubMed  CAS  Google Scholar 

  48. Newnham DM, Dhillon DP, Winter JH, Jackson CM, Clark RA, Lipworth BJ (1993) Bronchodilator reversibility to low and high doses of terbutaline and ipratropium bromide in patients with chronic obstructive pulmonary disease. Thorax 48: 1151–1155

    PubMed  CAS  Google Scholar 

  49. Takishima T, Sekizawa K, Tamura G, Inoue H (1991) Anticholinergics in treatment of COPD - site of bronchodilatation. In: Saunders KB (ed): Pathway to successful management. Wells Medical, Kent, Research and Clinical Forums 13,2 Part 2: 49–59

    Google Scholar 

  50. Pavia D, Moonen D (1999) Preliminary data from phase II studies with Respimat, a propellant-free soft mist inhaler. J Aerosol Med 12 (Suppl 1): S33–S39

    PubMed  Google Scholar 

  51. Hulme EC, Birdsall NJM, Buckley NJ (1990) Muscarinic receptor subtypes. Ann Rev Pharmacol 30: 633–673

    CAS  Google Scholar 

  52. Barnes PJ (1993) Muscarinic receptor subtypes in airways. Life Sci 52: 521–527

    PubMed  CAS  Google Scholar 

  53. Roffel AF, Elzinga CRS, Zaagsma J (1990) Muscarinic M3-receptors mediate contraction of human central and peripheral airway smooth muscle. Pulmonary Pharmacol 3: 347–351

    Google Scholar 

  54. Fryer AD, MacLagan J (1987) Ipratropium bromide potentiates bronchoconstriction induced by vagal nerve stimulation in the guinea-pig. Eur J Pharmacol 139: 187–191

    CAS  Google Scholar 

  55. D’Agostino G, Chiari MC, Grana E, Subisse A, Kilbinger H (1990) Muscarinic inhibition of acetylcholine release from a novel in vitro preparation of the guinea-pig trachea. Naunyn-Schmiedebergs Arch Pharmacol 342: 141–145

    PubMed  Google Scholar 

  56. Kilbinger H, Schneider R, Siefken H, Wolf D, D’Agostino G (1991) Characterization of prejunctional muscarinic autoreceptors in the guinea-pig trachea. Br J Pharmacol 103: 1757–1763

    PubMed  CAS  Google Scholar 

  57. Ten Berge REJ, Santing RE, Hamstra JJ, Roffel AF, Zaagsma J (1995) Dysfunction of muscarinic M2-receptors after the early allergic reaction: possible contribution to bronchial hyperresponsiveness in allergic guinea-pigs. Br J Pharmacol 114: 881–887

    PubMed  CAS  Google Scholar 

  58. Fryer AD, Adamko DJ, Yost BL, Jacoby DB (1999) Effects of inflammatory cells on neuronal M2 muscarinic receptor function in the lung. Life Sci 64: 449–455

    PubMed  CAS  Google Scholar 

  59. Patel HJ, Barnes PJ, Takahashi T, Tadjkarimi S, Magdi HY, Belvisi MG (1995) Evidence for prejunctional muscarinic autoreceptors in human and guinea pig trachea. Am J Respir Crit Care Med 152: 872–878

    PubMed  CAS  Google Scholar 

  60. Takahashi T, Belvisi MG, Patel H, Ward JK, Tadjkarimi S, Yacoub MH, Barnes PJ (1994) Effect of Ba 679 BR, a novel long-acting anticholinergic agent, on cholinergic neurotransmission in guinea-pig and human airways. Am J Respir Crit Care Med 150: 1640–1645

    PubMed  CAS  Google Scholar 

  61. Roffel AF, Meurs H, Zaagsma J (1997) Muscarinic receptors in COPD and asthma. In: Barnes PJ and Buist AS (eds): The role of anticholinergics in chronic obstructive pulmonary disease and chronic asthma. Gardiner-Caldwell Communications Lim, Macclesfield, Cheshire, UK, 92–125

    Google Scholar 

  62. Watson N, Magnussen H, Rabe KF (1995) Antagonism of ß-adrenoceptor-mediated relaxations of human bronchial smooth muscle by carbachol. Eur J Pharmacol 275: 307–310

    CAS  Google Scholar 

  63. Groeben H, Brown RH (1996) Ipratropium decreases airway size in dogs by preferential M2 muscarinic receptor blockade in vivo. Anaesthesiology 85: 867–873

    CAS  Google Scholar 

  64. Yarbrough J, Mansfield LE, Ting S (1983) Immediate bronchoconstriction response to metered dose albuterol. Ann Allergy 50: 363

    Google Scholar 

  65. Yarbrough J, Mansfield LE, Ting S (1985) Metered-dose inhaler induced bronchospasm in asthmatic patients. Ann Allergy 55: 25–27

    PubMed  CAS  Google Scholar 

  66. Cocchetto DM, Sykes S, Spector S (1991) Paradoxical bronchospasm after use of inhalation aerosol: a review of the literature. J Asthma 28: 49–53

    PubMed  CAS  Google Scholar 

  67. Beasley CRW, Rafferty P, Holgate ST (1987) Bronchoconstrictor properties of preservatives in ipratropium bromide (Atrovent) nebuliser solution. Br Med J 294: 1197–1198

    CAS  Google Scholar 

  68. Bryant DH and Rogers P (1992) Effects of ipratropium bromide nebulizer solution with and without preservatives in the treatment of acute and stable asthma. Chest 102: 742–747

    PubMed  CAS  Google Scholar 

  69. O’Callaghan C, Milner AD, Swarbrick A (1989) Paradoxical bronchoconstriction in wheezing infants after nebulised preservative free iso-osmolar ipratropium bromide. Br Med J 299: 1433–1434

    Google Scholar 

  70. O’Callaghan C, Milner AD, Swarbrick A (1989) Safer device with face mask attachment for giving bronchodilators to infants with asthma. Br Med J 298: 160–161

    Google Scholar 

  71. Szelenyi I, Boleski P (1989) Future trends in asthma therapy. Drug News Perspect 2: 270–277

    Google Scholar 

  72. Wellstein A, Pitschner HF (1988) Complex dose-response curves of atropine in man explained by different functions of M1- and M2-cholinoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 338: 19–27

    CAS  Google Scholar 

  73. Sertl K, Meryn S, Graninger W, Laggner A, Schlick W, Rameis H (1986) Acute effects of pirenzepine on bronchospasm. Intern J Clin Pharmacol Ther Toxicol 24: 655–657

    CAS  Google Scholar 

  74. Lammers JJ, Minette P, McCusker M, Barnes PJ (1989) The role of pirenzepine-sensitive (M1) muscarinic receptors in vagally mediated bronchoconstriction in humans. Am Rev Respir Dis 139: 446–449

    CAS  Google Scholar 

  75. Mezzetti M, Colombo L, Marini MG, Crusi V, Pierfederici P, Mussini E (1990) A pharmacokinetik study on pulmonary tropism of ambroxol in patients under thoracic surgery. J Em Surg 13: 179–185

    Google Scholar 

  76. Kaiser C, Audia VH, Carter JP, McPherson DW, Waid PP, Lowe VC, Noronha-Blob L (1993) Synthesis and antimuscarinic activity of some 1-cycloalky1–1-hydroxy-1-pheny1–3-(4-substituted piperazinyl)-2-propanones and related compounds. J Med Chem 36: 610–616

    PubMed  CAS  Google Scholar 

  77. Miyachi H, Kiyota H, Segawa M (1998) Novel imidazole derivatives with subtype-selective antimuscarinic activity (2). Bioorg Med Chem Letters 8: 2163–2168

    CAS  Google Scholar 

  78. Alabaster VA (1997) Discovery and development of selective M3 antagonists for clinical use. Life Sci 60: 1053–1060

    PubMed  CAS  Google Scholar 

  79. Wallis RM (1995) Pre-clinical and clinical pharmacology of selective muscarinic M3-receptor antagonists. Life Sci 56: 861–868

    PubMed  CAS  Google Scholar 

  80. Maesen F, Smeets J, Smeets P, Gorter de Vries I, Hodges M (1996) A double blind, single dose, 3 way cross-over study comparing the efficacy of inhaled U.K.-112,166 with ipratropium bromide and placebo in patients with COPD. Eur Respir J 9 (Suppl 23): 29S

    Google Scholar 

  81. Beaumont KC, Cussans NJ, Nichols DJ, Smith DA (1998) Pharmacokinetics and metabolism of darifenacin in the mouse, rat, dog and man. Xenobiotica 28: 63–75

    PubMed  CAS  Google Scholar 

  82. Cazzola M, Russo S, De Santis D, Principe P, Marmo E (1987) Respiratory responses to pirenzepine in healthy subjects. Intern J Clin Pharmacol Ther Toxicol 25: 105–109

    CAS  Google Scholar 

  83. Cazzola M, Matera MG, D’Amato G, De Santis D, Maione S, Lisa M, Cenicola ML, Marmo E (1989) Evidence of muscarinic receptor subtypes in airway smooth muscle of normal volunteers and of chronic obstructive pulmonary disease patients. Intern J Clin Pharm Res IX (1): 65–70

    Google Scholar 

  84. Ceyhan B, Celikel T, Simsir S, Kandemir B (1993) Comparison of the bronchodilator efficacy of nebulized pirenzepine and ipratropium bromide in patients with airway obstructive lung disease. Intern J Clin Pharmacol Ther Toxicol 31: 510–513

    CAS  Google Scholar 

  85. Cazzola M, D’Amato G, Guidetti E, Staudinger H, Steinijans VW, Kilian U (1990) An M1-selective muscarinic receptor antagonist telenzepine improves lung function in patients with chronic obstructive bronchitis. Pulm Pharmacol 3: 185–189

    PubMed  CAS  Google Scholar 

  86. Ukena D, Wehinger C, Engelstatter R, Steinijans V, Sybrecht GW (1993) The muscarinic M1-receptor-selective antagonist, telenzepine, had no bronchodilatory effects in COPD patients. Eur Respir J 6: 378–382

    PubMed  CAS  Google Scholar 

  87. Howell RE, Laemont KD, Kovalsky MP, Lowe VC, Waid PP, Kinnier WJ, Noronha-Blob L (1994) Pulmonary pharmacology of a novel, smooth muscle-selective muscarinic antagonist in vivo. J Pharmacol Exp Ther 270: 546–553

    Google Scholar 

  88. Miyachi H, Kiyota H, Segawa M (1998) Novel imidazole derivatives with subtype-selective antimuscarinic activity (1). Bioorg Med Chem Letters 8: 1807–1812

    CAS  Google Scholar 

  89. Muravchick S, Owens WD, Felts JA (1979) Glycopyrrolate and cardiac dysrhythmias in geriatric patients after reversal of neuromuscular blockade. Can Anaesth Soc J 26: 22–25

    PubMed  CAS  Google Scholar 

  90. Gilman JG, Meyer L, Carter J, Slovis C (1990) Comparison of aerosolized glycopyrrolate and metaproterenol in acute asthma. Chest 98: 1095–98

    PubMed  CAS  Google Scholar 

  91. Cydulka RK, Emerman CL (1995) Effects of combined treatment with glycopyrrolate and albuterol in acute exacerbation of chronic obstructive pulmonary disease. Ann Emerg Med 25: 470–473

    PubMed  CAS  Google Scholar 

  92. Tzelepis G, Komanapolli S, Tyler D, Vega D, Fulambarker A (1996) Comparison of nebulized glycopyrrolate and metaproterenol in chronic obstructive pulmonary disease. Eur Respir J 9:100–103

    PubMed  CAS  Google Scholar 

  93. Kubo S, Morikawa K, Yamazaki M, Matsubara I, Kato H (1981) Antispasmodic activities of 3-(di-2-thienylmethylene)-5-methyl-trans-quinolizium bromide (HSR-902) on smooth muscle organs and its organ selectivity. Folia Pharmacol Jpn 77: 87–98

    CAS  Google Scholar 

  94. Shioya C, Kagaya M, Sano M, Itaba M, Shindo T, Miura M (1996) Antimuscarinic effect of tiquizium bromide in vitro and in vivo. Eur J Clin Pharmacol 50: 375–380

    PubMed  CAS  Google Scholar 

  95. Frith PA, Jenner B, Dangerfield R, Atkinson J, Drennan C (1986) Oxitropium bromide, dose-response and time-response study of a new anticholinergic bronchodilator drug. Chest 86: 249–253

    Google Scholar 

  96. Matera MG, Cazzola M, Vinciguerra A, Di Perna F, Calderaro F, Caputi M, Rossi F (1995) A comparison of the bronchodilating effects of salmeterol, salbutamol and ipratropium bromide in patients with chronic obstructive pulmonary disease. Pulm Pharmacol 8: 267--271

    PubMed  CAS  Google Scholar 

  97. Mahler DA, Donohue JF, Barbee RA, Goldman MD, Gross NJ, Wisniewski ME, Yancey SW, Zakes BA, Rickard KA, Anderson WH (1999) Efficacy of salmeterol xinafoate in the treatment of COPD. Chest 115: 957–965

    PubMed  CAS  Google Scholar 

  98. Littner MR, Ilowite JS, Tashkin DP, Friedman M, Serby CW, Menjoge SS, Witek TJ (2000) Long-acting bronchodilation with once daily dosing of tiotropium (SpirivaTM) in stable COPD. Am J Respir Crit Care Med 161: 1136–1142

    PubMed  CAS  Google Scholar 

  99. Casaburi R, Serby CW, Menjoge SS, Witek TJ for the American study group (1999) The spirometric efficacy of once daily dosing with tiotropium in stable COPD. Am J Respir Crit Care Med 159, A 524

    Google Scholar 

  100. Maesen FPV, Smeets JJ, Costongs MAL, Wald FDM, Cornelissen PJD (1993) BA 679 BR, a new long-acting antimuscarinic bronchodilator: a pilot dose-escalation study. Eur Respir J 6: 1031–1036

    PubMed  CAS  Google Scholar 

  101. Disse B, Rominger K, Serby CW, Souhrada JF, Witek TJ (1999b) The pharmacokinetic (PK) profile of tiotropium during long term treatment in stable COPD. Am J Respir Crit Care Med 159: A524

    Google Scholar 

  102. O’Connor BJ, Towse LJ, Barnes PJ (1996) Prolonged effect of tiotropium bromide on methacholine-induced bronchoconstriction in asthma. Am J Respir Crit Care Med 154: 876–880

    Google Scholar 

  103. Wilson NM, Green S, Coe C, Barnes PJ (1987) Duration of protection by oxitropium bromide against cholinergic challenge. Eur J Respir Dis 71: 455–458

    PubMed  CAS  Google Scholar 

  104. Maesen FPV, Smeets JJ, Sledsens TJH, Wald FDM, Cornelissen PJG (1995) Tiotropium bromide, a new long-acting antimuscarinic bronchodilator: a pharmacodynamic study in patients with chronic obstructive pulmonary disease (COPD). Eur Respir J 8: 1506–1513

    PubMed  CAS  Google Scholar 

  105. American Thoracic Society (1987) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. Am Rev Respir Dis 136: 225–243

    Google Scholar 

  106. Van Noord JA, Smeets JJ, Maesen FP, Korducki L, Cornelissen PJ (1998) The onset of spirometric response following once daily inhalation of tiotropium in patients with COPD. Eur Respir J 12 (Suppl 28): 1S: A0124

    Google Scholar 

  107. Noord JA van, Bantje TA, Eland ME, Korducki L, Cornelissen PJG (2000) A randomised controlled comparison of tiotropium and ipratropium in the treatment of chronic obstructive pulmonary disease. Thorax 55: 289–294

    PubMed  Google Scholar 

  108. American Thoracic Society (1991) Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis 144: 1202–1218

    Google Scholar 

  109. Tashkin DP (1995) Measurement and significance of the bronchodilator response: bronchodilation and inhibition of bronchoprovocation. In: Spector SHL (ed): Provocation testing in clinical practice. Marcel Dekker Inc, New York, 512–573

    Google Scholar 

  110. Myers GM (1996) Suggested guidelines for determining the trough-to-peak ratio of anti-hypertensive drugs. Am J Hypertens 9: 76S–82S

    PubMed  CAS  Google Scholar 

  111. Hammer R, Giachetti A (1982) Muscarinic receptor subtypes: M1 and M2. Biochemical and functional characterisation. Life Sci 31: 2991–2994

    PubMed  CAS  Google Scholar 

  112. Rabe KF, Lindén A (1997) Mechanism of duration of action of inhaled long-acting beta2-adrenoceptor agonists. In: Pauwels R, O’Byrne PM (eds): Beta 2 -agonists in asthma treatment. Marcel Dekker Inc, New York, 131–156

    Google Scholar 

  113. Schroeckenstein DC, Bush RK, Chervinsky P, Busse WW (1988) Twelve-hour bronchodilation in asthma with a single aerosol dose of the anticholinergic compound glycopyrrolate. J Allergy Clin Immunol 82: 115–119

    PubMed  CAS  Google Scholar 

  114. Mitsuya M, Mase T, Tsuchiya Y, Kawakami K, Hattori H, Kobayashi K, Ogino Y, Fujikawa T, Satoh A, Kimura T et al (1999) J-104129, a novel muscarinic M3 receptor antagonist with high selectivity for M3 over M2 receptors. Bioorg Med Chem 7: 2555–2567

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Disse, B. (2001). Novel perspectives in anticholinergic therapy. In: Zaagsma, J., Meurs, H., Roffel, A.F. (eds) Muscarinic Receptors in Airways Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8358-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8358-0_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9532-3

  • Online ISBN: 978-3-0348-8358-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics