Skip to main content

Signal transduction mechanisms for members of the TGF-β family

  • Chapter

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The transforming growth factor-β (TGF-β) superfamily consists of about 30 mammalian members, including TGF-β isoforms, activins, bone morphogenetic proteins (BMPs), Müllerian inhibiting substance (MIS) and others (reviewed by [1]). These factors regulate cell growth, differentiation and apoptosis of various cell types, and have important functions during the embryonal development. TGF-β isoforms inhibit the growth of most cell types, including epithelial cells, endothelial cells and lymphocytes; however, the growth of certain connective tissue cells is stimulated. TGF-β also causes an accumulation of extracellular matrix molecules, via stimulation f synthesis as well as inhibition of degradation, and triggers the IgA class switch of B lymphocytes. Activins stimulate the secretion of follicle stimulating hormone secretion from pituitary cells, promote differentiation of erythropoietic cells and survival of neuronal tissue, and induce dorsal mesoderm in Xenopus embryos. BMPs induce bone and cartilage in vivo, affect the differentiation of hematopoietic stem cells and neural cells, and induce ventral mesoderm in Xenopus. Overactivity or loss of activity of members of the TGF-β family has been implicated in certain disorders, including fibrotic conditions, rheumatoid arthritis and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piek E, Heldin C-H, ten Dijke P (1999) Specificity, diversity and regulation in TGF-β superfamily signaling. FASEB J 13: 2105–2124

    PubMed  CAS  Google Scholar 

  2. Heldin C-H, Miyazono K, ten Dijke P (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471

    PubMed  CAS  Google Scholar 

  3. Massagué J (1998) TGF-β signal transduction. Annu Rev Biochem 67: 753–791

    PubMed  Google Scholar 

  4. López-Casillas F, Wrana JL, Massagué J (1993) Betaglycan presents ligand to the TGF-β signaling receptor. Cell 73: 1435–1444

    PubMed  Google Scholar 

  5. Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265: 8361–8364

    PubMed  CAS  Google Scholar 

  6. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J (1994) Mechanism of activation of the TGF-β receptor. Nature 370: 341–347

    PubMed  CAS  Google Scholar 

  7. Wieser R, Wrana JL, Massagué J (1995) GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex. EMBO J 14:2199–2208

    PubMed  CAS  Google Scholar 

  8. Franzén P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin C-H, Miyazono K (1993) Cloning of a TGFβ type I receptor that forms a heteromeric complex with the TGFβ type II receptor. Cell 75: 681–692

    PubMed  Google Scholar 

  9. Lin HY, Wang X-F, Ng-Eaton E, Weinberg RA, Lodish HF (1992) Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 68: 775–785

    PubMed  CAS  Google Scholar 

  10. Mathews LS, Vale WW (1991) Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65: 973–982

    PubMed  CAS  Google Scholar 

  11. Attisano L, Wrana JL, Cheifetz S, Massagué J (1992) Novel activin receptors: Distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 68: 97–108

    PubMed  CAS  Google Scholar 

  12. ten Dijke P, Yamashita H, Ichijo H, Franzén P, Laiho M, Miyazono K, Heldin C-H (1994) Characterization of type I receptors for transforming growth factor-β and activin. Science 264: 101–104

    PubMed  Google Scholar 

  13. Liu F, Ventura F, Doody J, Massagué J (1995) Human type II receptor for bone morphogenic proteins (BMPs): Extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 15: 3479–3486

    PubMed  CAS  Google Scholar 

  14. Nohno T, Ishikawa T, Saito T, Hosokawa K, Noji S, Wolsing DH, Rosenbaum JS (1995) Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J Biol Chem 270: 22522–22526

    PubMed  CAS  Google Scholar 

  15. Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin C-H, Miyazono K (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sct USA 92: 7632–7636

    CAS  Google Scholar 

  16. Wang T, Li B-Y, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell 86: 435–444

    PubMed  CAS  Google Scholar 

  17. Chen YG, Liu F, Massagué J (1997) Mechanism of TGFβ receptor inhibition by FKBP12. EMBO J 16: 3866–3876

    PubMed  CAS  Google Scholar 

  18. Huse M, Chen YG, Massagué J, Kuriyan J (1999) Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12. Cell 96: 425–436

    PubMed  CAS  Google Scholar 

  19. Luo J, Lodish HF (1997) Positive and negative regulation of type III TGF-β receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J 16: 1970–1981

    PubMed  CAS  Google Scholar 

  20. Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R (1997) The type II transforming growth factor-β receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem 272: 14850–14859

    PubMed  CAS  Google Scholar 

  21. Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin C-H (1996) Phosphorylation of Ser 165 in TGF-β type I receptor modulates TGF-β1-induced cellular responses. EMBO J 15:6231–6240

    PubMed  CAS  Google Scholar 

  22. Raftery LA, Twombly V, Wharton K, Gelbart WM (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139: 241–254

    PubMed  CAS  Google Scholar 

  23. Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139: 1347–1358

    PubMed  CAS  Google Scholar 

  24. Savage C, Das P, Finelli AL, Townsend SR, Sun C-Y, Baird SE, Padgett RW (1996) Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc Natl Acad Sci USA 93: 790–794

    PubMed  CAS  Google Scholar 

  25. Kretzschmar M, Liu F, Hata A, Doody J, Massagué J (1997) The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11: 984–995

    PubMed  CAS  Google Scholar 

  26. Abdollah S, Macías-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Ghent 272: 27678–27685

    CAS  Google Scholar 

  27. Souchelnytskyi S, Tamaki K, Engström U, Wernstedt C, ten Dijke P, Heldin C-H (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling. J Biol Chem 272: 28107–28115

    PubMed  CAS  Google Scholar 

  28. Chen YG, Massagué J (1999) Smadl recognition and activation by the ALK1 group of transforming growth factor-β family receptors. J Biol Ghent 274: 3672–3677

    CAS  Google Scholar 

  29. Masuyama N, Hanafusa H, Kusakabe M, Shibuya H, Nishida E (1999) Identification of two Smad4 proteins in Xenopus. Their common and distinct properties. J Biol Ghent 274: 12163–12170

    CAS  Google Scholar 

  30. LeSuer JA, Graff JM (1999) Spemann organizer activity of Smad10. Development 126: 137–146

    Google Scholar 

  31. Liu F, Hata A, Baker JC, Doody J, Cárcamo J, Harland RM, Massagué J (1996) A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381: 620–623

    PubMed  CAS  Google Scholar 

  32. Hata A, Lo RS, Wotton D, Lagna G, Massagué J (1997) Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388: 82–87

    PubMed  CAS  Google Scholar 

  33. Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388: 87–93

    PubMed  CAS  Google Scholar 

  34. Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K (1998) Smad proteins exist as monomers in vivo and undergo homo-and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J 17: 4056–4065

    PubMed  CAS  Google Scholar 

  35. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1: 611–617

    PubMed  CAS  Google Scholar 

  36. Kim J, Johnson K, Chen HJ, Carroll S, Laughon A (1997) Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388: 304–308

    PubMed  CAS  Google Scholar 

  37. Shi YG, Wang YF, Jayaraman L, Yang HJ, Massagué J, Pavletich NP (1998) Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 94: 585–594

    PubMed  CAS  Google Scholar 

  38. Shioda T, Lechleider RJ, Dunwoodie SL, Li H, Yahata T, de Caestecker MP, Fenner MH, Roberts AB, Isselbacher KJ (1998) Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc Natl Acad Sci USA 95: 9785–9790

    PubMed  CAS  Google Scholar 

  39. de Caestecker MP, Hemmati P, Larisch-Bloch S, Ajmera R, Roberts AB, Lechleider RJ (1997) Characterization of functional domains within Smad4/DPC4. J Biol Chem 272: 13690–13696

    PubMed  Google Scholar 

  40. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95: 779–791

    PubMed  CAS  Google Scholar 

  41. Feng X-H, Derynck R (1997) A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling specificity. EMBO J 16:3912–3923

    PubMed  CAS  Google Scholar 

  42. Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massagué J (1998) Determinants of specificity in TGF-β signal transduction. Genes Dev 12: 2144–2152

    PubMed  CAS  Google Scholar 

  43. Armes NA, Neal KA, Smith JC (1999) A short loop on the ALK-2 and ALK-4 activin receptors regulates signaling specificity but cannot account for all their effects on early Xenopus development. J Biol Chem 274: 7929–7935

    PubMed  CAS  Google Scholar 

  44. Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, Engström U, Heldin C-H, Funa K, ten Dijke P (1998) The L45 loop in type I receptors for TGF-β family members is a critical determinant in specifying Smad isoform activation. FEBS Lett 434: 83–87

    PubMed  CAS  Google Scholar 

  45. Lo RS, Chen YG, Shi Y, Pavletich NP, Massagué J (1998) The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J 17: 996–1005

    PubMed  CAS  Google Scholar 

  46. Hocevar BA, Brown TL, Howe PH (1999) TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18: 1345–1356

    PubMed  CAS  Google Scholar 

  47. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J-i, Heldin C-H, Miyazono K et al (1997) TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16: 5353–5362

    PubMed  CAS  Google Scholar 

  48. Liu F, Pouponnot C, Massagué J (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev 11: 3157–3167

    PubMed  CAS  Google Scholar 

  49. Zhang Y, Musci T, Derynck R (1997) The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr Biol 7: 270–276

    PubMed  Google Scholar 

  50. Xu X, Yin Z, Hudson JB, Ferguson EL, Frasch M (1998) Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes Dev 12: 2354–2370

    PubMed  CAS  Google Scholar 

  51. Nguyen HT, Xu X (1998) Drosophila mef2 expression during mesoderm development is controlled by a complex array of cis-acting regulatory modules. Dev Biol 204: 550–566

    PubMed  CAS  Google Scholar 

  52. Labbé E, Silvestri C, Hoodless PA, Wrana JL, Attisano L (1998) Smad2 and Smad3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 2: 109–120

    PubMed  Google Scholar 

  53. Vindevoghel L, Kon A, Lechleider RJ, Uitto J, Roberts AB, Mauviel A (1998) Smaddependent transcriptional activation of human type VII collagen gene (COL7A1) promoter by transforming growth factor-β. J Biol Chem 273: 13053–13057

    PubMed  CAS  Google Scholar 

  54. Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF (1997) Tumor suppressor Smad4 is a transforming growth factor β-inducible DNA binding protein. Mol Cell Biol 17: 7019–7028

    PubMed  CAS  Google Scholar 

  55. Zhang Y, Feng XH, Derynck R (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394: 909–913

    PubMed  CAS  Google Scholar 

  56. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier J-M (1998) Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17: 3091–3100

    PubMed  CAS  Google Scholar 

  57. Song CZ, Siok TE, Gelehrter TD (1998) Smad4/DPC4 and Smad3 mediate transforming growth factor-β (TGF-β) signaling through direct binding to a novel TGF-β-respon-sive element in the human plasminogen activator inhibitor-1 promoter. J Biol Chem 273: 29287–29290

    PubMed  CAS  Google Scholar 

  58. Stroschein SL, Wang W, Luo K (1999) Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor β-induced Smad-dependent transcriptional activation. J Biol Chem 274: 9431–9441

    PubMed  CAS  Google Scholar 

  59. Jonk LJC, Itoh S, Heldin C-H, ten Dijke P, Kruijer W (1998) Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem 273: 21145–21152

    PubMed  CAS  Google Scholar 

  60. Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li J-M, Wang X-F (1999) Smad3/Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor-β. Mol Cell Biol 19: 1821–1830

    PubMed  CAS  Google Scholar 

  61. Vindevoghel L, Lechleider RJ, Kon A, de Caestecker MP, Uitto J, Roberts AB, Mauviel A (1998) SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor β. Froc Natl Acad Sci USA 95: 14769–14774

    CAS  Google Scholar 

  62. Hunt KK, Fleming JB, Abramian A, Zhang L, Evans DB, Chiao PJ (1998) Overexpression of the tumor suppressor gene Smad4/DPC4 induces p21 waf1 expression and growth inhibition in human carcinoma cells. Cancer Res 58: 5656–5661

    PubMed  CAS  Google Scholar 

  63. Thatcher JD, Haun C, Okkema PG (1999) The DAF-3 Smad binds DNA and represses gene expression in the Caenorhahditis elegans pharynx. Development 126: 97–107

    PubMed  CAS  Google Scholar 

  64. Dennler S, Huet S, Gauthier JM (1999) A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene 18: 1643–1648

    PubMed  CAS  Google Scholar 

  65. Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K (1999) Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J Biol Chem 274: 703–709

    PubMed  CAS  Google Scholar 

  66. Derynck R, Zhang Y, Feng X-H (1998) Smads: Transcriptional activators of TGF-β responses. Cell 95: 737–740

    PubMed  CAS  Google Scholar 

  67. Chen X, Rubock MJ, Whitman M (1996) A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383: 691–696

    PubMed  CAS  Google Scholar 

  68. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389: 85–89

    PubMed  CAS  Google Scholar 

  69. Zhou S, Zawel L, Lengauer C, Kinzler KW, Vogelstein B (1998) Characterization of human FAST-1, a TGFβ and activin signal transducer. Mol Cell 2: 121–127

    PubMed  CAS  Google Scholar 

  70. Liu B, Dou C-L, Prabhu L, Lai E (1999) FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor β signals. Mol Cell Biol 19: 424–430

    PubMed  Google Scholar 

  71. Candia AF, Watabe T, Hawley SHB, Onichtchouk D, Zhang Y, Derynck R, Niehrs C, Cho KWY (1997) Cellular interpretation of multiple TGF-β signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124: 4467–4480

    PubMed  CAS  Google Scholar 

  72. Kaufmann E, Paul H, Friedle H, Metz A, Scheucher M, Clement JH, Knöchel W (1996) Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-V in Xenopus laevis embryos. EMBO J 15: 6739–6749

    PubMed  CAS  Google Scholar 

  73. Howell M, Hill CS (1997) XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J 16: 7411–7421

    PubMed  CAS  Google Scholar 

  74. Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang X-F (1999) Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci USA 96: 4844–4849

    PubMed  CAS  Google Scholar 

  75. Hua XX, Liu XD, Ansari DO, Lodish HF (1998) Synergistic cooperation of TFE3 and Smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 12: 3084–3095

    PubMed  CAS  Google Scholar 

  76. Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazono K, Kato S (1999) Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283: 1317–1321

    PubMed  CAS  Google Scholar 

  77. Roberts AB, Sporn MB (1992) Mechanistic interrelationships between two superfamilies: The steroid/retinoid receptors and transforming growth factor-β. Cancer Surveys 14: 205–220

    PubMed  CAS  Google Scholar 

  78. Li J-M, Nichols MA, Chandrasekharan S, Xiong Y, Wang X-F (1995) Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J Biol Chem 270: 26750–26753

    PubMed  CAS  Google Scholar 

  79. Datto MB, Yu Y, Wang X-F (1995) Functional analysis of the transforming growth factor β responsive elements in the WAFl/Cipl/p21 promoter. J Biol Chem 270: 28623–28628

    PubMed  CAS  Google Scholar 

  80. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor-β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92: 5545–5549

    PubMed  CAS  Google Scholar 

  81. Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL (1998) Transcriptional activation of transforming growth factor β1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1 — Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 273: 33750–33758

    PubMed  CAS  Google Scholar 

  82. Greenwel P, Inagaki Y, Hu W, Walsh M, Ramirez F (1997) Spl is required for the early response of α2(I) collagen to transforming growth factor-β1. J Biol Chem 272: 19738–19745

    PubMed  CAS  Google Scholar 

  83. Ammanamanchi S, Kim SJ, Sun LZ, Brattain MG (1998) Induction of transforming growth factor-β receptor type II expression in estrogen receptor-positive breast cancer cells through SP1 activation by 5-aza-2’-deoxycytidine. J Biol Chem 273: 16527–16534

    PubMed  CAS  Google Scholar 

  84. Li JM, Datto MB, Shen X, Hu PPC, Yu Y, Wang XF (1998) Spl, but not Sp3, functions to mediate promoter activation by TGF-β through canonical Spl binding sites. Nucleic Acids Res 26: 2449–2456

    PubMed  CAS  Google Scholar 

  85. Moustakas A, Kardassis D (1998) Regulation of the human p21/WAFl/Cipl promoter in hepatic cells by functional interactions between Spl and Smad family members. Proc Natl Acad Sci USA 95: 6733–6738

    PubMed  CAS  Google Scholar 

  86. Kon A, Vindevoghel L, Kouba DJ, Fujimura Y, Uitto J, Mauviel A (1999) Cooperation between SMAD and NF-kappaB in growth factor regulated type VII collagen gene expression. Oncogene 18: 1837–1844

    PubMed  CAS  Google Scholar 

  87. Alevizopoulos A, Dusserre Y, Rüegg U, Mermod N (1997) Regulation of the transforming growth factor β-responsive transcription factor CTF-1 by calcineurin and calcium/calmodulin-dependent protein kinase IV. J Biol Chem 272: 23597–23605

    PubMed  CAS  Google Scholar 

  88. Eresh S, Riese J, Jackson DB, Bohmann D, Bienz M (1997) A CREB-binding site as a target for decapentaplegic signalling during Drosophila endoderm induction. EMBO J 16: 2014–2022

    PubMed  CAS  Google Scholar 

  89. Tang SJ, Hoodless PA, Lu Z, Breitman ML, McInnes RR, Wrana JL, Buchwald M (1998) The Tlx-2 homeobox gene is a downstream target of BMP signalling and is required for mouse mesoderm development. Development 125: 1877–1887

    PubMed  CAS  Google Scholar 

  90. Hollnagel A, Oehlmann V, Heymer J, Rüther U, Nordheim A (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274: 19838–19845

    PubMed  CAS  Google Scholar 

  91. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H (1998) The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 394: 92–96

    PubMed  CAS  Google Scholar 

  92. Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su M-T, Bodmer R et al (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5’-CACCT sequences in candidate target genes. J Biol Chem 274: 20489–20498

    PubMed  CAS  Google Scholar 

  93. Shi X, Yang X, Chen D, Chang Z, Cao X (1999) Smad1 interacts with homeobox DNAbinding proteins in bone morphogenetic protein signaling. J Biol Chem 274: 13711–13717

    PubMed  CAS  Google Scholar 

  94. Feng XH, Zhang Y, Wu RY, Derynck R (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes Dev 12: 2153–2163

    PubMed  CAS  Google Scholar 

  95. Janknecht R, Wells NJ, Hunter T (1998) TGF-β-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 12: 2114–2119

    PubMed  CAS  Google Scholar 

  96. Topper JN, DiChiara MR, Brown JD, Williams AJ, Falb D, Collins T, Gimbrone MA Jr (1998) CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor-β transcriptional responses in endothelial cells. Proc Natl Acad Sci USA 95: 9506–9511

    PubMed  CAS  Google Scholar 

  97. Pouponnot C, Jayaraman L, Massagué J (1998) Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 273: 22865–22868

    PubMed  CAS  Google Scholar 

  98. Nishihara A, Hanai J-i, Okamoto N, Yanagisawa J, Kato S, Miyazono K, Kawabata M (1998) Role of p300, a transcriptional coactivator, in signalling of TGF-β. Genes Cells 3: 613–623

    PubMed  CAS  Google Scholar 

  99. Shen X, Hu PP, Liberad NT, Datto MB, Frederick JP, Wang XF (1998) TGF-β-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-bind-ing protein. Mol Biol Cell 9: 3309–3319

    PubMed  CAS  Google Scholar 

  100. Janknecht R, Hunter T (1996) Transcriptional control: Versatile molecular glue. Curr Biol 6: 951–954

    PubMed  CAS  Google Scholar 

  101. Wotton D, Lo RS, Lee S, Massagué J (1999) A Smad transcriptional corepressor. Cell 97: 29–39

    PubMed  CAS  Google Scholar 

  102. Jazwinska A, Kirov N, Wieschaus E, Roth S, Chrsitine 1999) The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. Cell 96: 563–573

    PubMed  CAS  Google Scholar 

  103. Campbell G, Tomlinson A (1999) Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp targets by brinker. Cell 96: 553–562

    PubMed  CAS  Google Scholar 

  104. Minami M, Kinoshita N, Kamoshida Y, Tanimoto H, Tabata T (1999) brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes. Nature 398: 242–246

    PubMed  CAS  Google Scholar 

  105. Topper JN, Cai J, Qiu Y, Anderson KR, Xu Y-Y, Deeds JD, Feeley R, Gimeno CJ, Woolf EA, Tayber O et al (1997) Vascular MADs: Two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci USA 94: 9314–9319

    PubMed  CAS  Google Scholar 

  106. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MAJ, Wrana JL et al (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89: 1165–1173

    PubMed  CAS  Google Scholar 

  107. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K (1997) Smad6 inhibits signalling by the TGF-β superfamily. Nature 389: 622–626

    PubMed  CAS  Google Scholar 

  108. Nakayama T, Snyder MA, Grewal SS, Tsuneizumi K, Tabata T, Christian JL (1998) Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development 125: 857–867

    PubMed  CAS  Google Scholar 

  109. Tsuneizumi K, Nakayama T, Kamoshida Y, Kornberg TB, Christian JL, Tabata T (1997) Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389: 627–631

    PubMed  CAS  Google Scholar 

  110. Souchelnytskyi S, Nakayama T, Nakao A, Morén A, Heldin C-H, Christian JL, ten Dijke P (1998) Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-β receptors. J Biol Chem 273: 25364–25370

    PubMed  CAS  Google Scholar 

  111. Inoue H, Imamura T, Ishidou Y, Takase M, Udagawa Y, Oka Y, Tsuneizumi K, Tabata T, Miyazono K, Kawabata M (1998) Interplay of signal mediators of decapentaplegic (Dpp): Molecular characterization of mothers against dpp, medea, and daughters against dpp. Mol Biol Cell 9: 2145–2156

    PubMed  CAS  Google Scholar 

  112. Lebrun JJ, Takabe K, Chen Y, Vale W (1999) Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol Endocrinol 13: 15–23

    PubMed  CAS  Google Scholar 

  113. Itoh S, Landström M, Hermansson A, Itoh F, Heldin C-H, Heldin N-E, ten Dijke P (1998) Transforming growth factor β1 induces nuclear export of inhibitory Smad7. J Biol Chem 273: 29195–29201

    PubMed  CAS  Google Scholar 

  114. Ishisaki A, Yamato K, Nakao A, Nonaka K, Ohguchi M, ten Dijke P, Nishihara T (1998) Smad7 is an activin-inducible inhibitor of activin-induced growth arrest and apoptosis in mouse B cells. J Biol Chem 273: 24293–24296

    PubMed  CAS  Google Scholar 

  115. Ishisaki A, Yamato K, Hashimoto S, Nakao A, Tamaki K, Nonaka K, ten Dijke P, Sugino H, Nishihara T (1999) Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein-and activin-mediated growth arrest and apoptosis in B cells. J Biol Chem 274: 13637–13642

    PubMed  CAS  Google Scholar 

  116. Bhushan A, Chen Y, Vale W (1998) Smad7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev Biol 200: 260–268

    PubMed  CAS  Google Scholar 

  117. Casellas R, Brivanlou AH (1998) Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. Dev Biol 198: 1–12

    PubMed  CAS  Google Scholar 

  118. Afrakhte M, Morén A, Jossan S, Itoh S, Sampath K, Westermark B, Heldin C-H, Heldin N-E, ten Dijke P (1998) Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem Biophys Res Commun 249: 505–511

    PubMed  CAS  Google Scholar 

  119. Takase M, Imamura T, Sampath TK, Takeda K, Ichijo H, Miyazono K, Kawabata M (1998) Induction of Smad6 mRNA by bone morphogenetic proteins. Biochem Biophys Res Commun 244: 26–29

    PubMed  CAS  Google Scholar 

  120. Ulloa L, Doody J, Massagué J (1999) Inhibition of transforming growth factor-β/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397: 710–713

    PubMed  CAS  Google Scholar 

  121. Kleeff J, Maruyama H, Friess H, Büchler MW, Falb D, Korc M (1999) Smad6 suppresses TGF-β-induced growth inhibition in COLO-357 pancreatic cancer cells and is overex-pressed in pancreatic cancer. Biochem Biophys Res Commun 255: 268–273

    PubMed  CAS  Google Scholar 

  122. Kretzschmar M, Doody J, Massagué J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 389: 618–622

    PubMed  CAS  Google Scholar 

  123. Kretzschmar M, Doody J, Timokhina I, Massagué J (1999) A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev 13: 804–816

    PubMed  CAS  Google Scholar 

  124. Yue J, Hartsough MT, Frey RS, Frielle T, Mulder KM (1999) Cloning and expression of a rat Smadl: Regulation by TGFβ and modulation by the Ras/MEK pathway. J Cell Physiol 178: 387–396

    PubMed  CAS  Google Scholar 

  125. De Caestecker MP, Parks WT, Frank CJ, Castagnino P, Bottaro DP, Roberts AB, Lech-leider RJ (1998) Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 12: 1587–1592

    PubMed  Google Scholar 

  126. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270: 2008–2011

    PubMed  CAS  Google Scholar 

  127. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K (1996) TAB1: An activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272: 1179–1182

    PubMed  CAS  Google Scholar 

  128. Shibuya H, Iwata H, Masuyama N, Gotoh Y, Yamaguchi K, Irie K, Matsumoto K, Nishida E, Ueno N (1998) Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 17: 1019–1028

    PubMed  CAS  Google Scholar 

  129. Yamaguchi K, Nagai S-i, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K (1999) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18: 179–187

    PubMed  CAS  Google Scholar 

  130. Kurozumi K, Nishita M, Yamaguchi K, Fujita T, Ueno N, Shibuya H (1998) BRAM1, a BMP receptor-associated molecule involved in BMP signalling. Genes Cells 3: 257–264

    PubMed  CAS  Google Scholar 

  131. Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, Gotoh Y, Matsumoto K, Nishida E (1997) TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-termina1 kinase. J Biol Chem 272: 8141–8144

    PubMed  CAS  Google Scholar 

  132. Atfi A, Djelloul S, Chastre E, Davis R, Gespach C (1997) Evidence for a role of Rholike GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor β-mediated signaling. J Biol Chem 272: 1429–1432

    PubMed  CAS  Google Scholar 

  133. Frey RS, Mulder KM (1997) Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase Jun N-terminal kinase activation by transforming growth factor β in the negative growth control of breast cancer cells. Cancer Res 57: 628–633

    PubMed  CAS  Google Scholar 

  134. Atfi A, Buisine M, Mazars A, Gespach C (1997) Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-β through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J Biol Chem 272: 24731–24734

    PubMed  CAS  Google Scholar 

  135. Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S (1999) ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J Biol Chem 274: 8949–8957

    PubMed  CAS  Google Scholar 

  136. Brown JD, DiChiara MR, Anderson KR, Gimbrone MA Jr, Topper JN (1999) MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem 274: 8797–8805

    PubMed  CAS  Google Scholar 

  137. Hartsough MT, Frey RS, Zipfel PA, Buard A, Cook SJ, McCormick F, Mulder KM (1996) Altered transforming growth factor β signaling in epithelial cells when Ras activation is blocked. J Biol Chem 271: 22368–22375

    PubMed  CAS  Google Scholar 

  138. Mucsi I, Skorecki KL, Goldberg HJ (1996) Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-β1 on gene expression. J Biol Chem 271: 16567–16572

    PubMed  CAS  Google Scholar 

  139. Yue J, Frey RS, Mulder KM (1999) Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGFβ. Oncogene 18: 2033–2037

    PubMed  CAS  Google Scholar 

  140. Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ (1996) TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86: 531–542

    PubMed  CAS  Google Scholar 

  141. Matzuk MM, Finegold MJ, Su J-GJ, Hsueh AJW, Bradley A (1992) α-Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360: 313–319

    PubMed  CAS  Google Scholar 

  142. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338

    PubMed  CAS  Google Scholar 

  143. Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Sensibar JA, Kim JH, Kato M, Lee C (1996) Genetic change in transforming growth factor β (TGF-β) receptor type I gene correlates with insensitivity to TGF-βl in human prostate cancer cells. Cancer Res 56: 44–48

    PubMed  CAS  Google Scholar 

  144. DeCoteau JF, Knaus PI, Yankelev H, Reis MD, Lowsky R, Lodish HF, Kadin ME (1997) Loss of functional cell surface transforming growth factor β (TGF-β) type 1 receptor correlates with insensitivity to TGF-β in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 94: 5877–5881

    PubMed  CAS  Google Scholar 

  145. Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE (1998) Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58: 5329–5332

    PubMed  CAS  Google Scholar 

  146. Chen TP, Carter D, Garrigue-Antar L, Reiss M (1998) Transforming growth factor-β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 58: 4805–4810

    PubMed  CAS  Google Scholar 

  147. Hahn SA, Schutte M, Hoque ATMS, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350–353

    PubMed  CAS  Google Scholar 

  148. Hahn SA, Bartsch D, Schroers A, Galehdari H, Becker M, Ramaswamy A, Schwarte-Waldhoff I, Maschek H, Schmiegel W (1998) Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res 58: 1124–1126

    PubMed  CAS  Google Scholar 

  149. Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, Willson JKV, Markowitz S, Hamilton SR, Kern SE et al (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genetics 13: 343–346

    PubMed  CAS  Google Scholar 

  150. Riggins RG, Kinzler KW, Vogelstein B, Thiagalingam S (1997) Frequency of Smad gene mutations in human cancers. Cancer Res 57: 2578–2580

    PubMed  CAS  Google Scholar 

  151. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L-C, Bapat B, Gallinger S, Andrulis IL et al (1996) MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86: 543–552

    PubMed  CAS  Google Scholar 

  152. Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B (1996) Mad-related genes in the human. Nature Genetics 13: 347–349

    PubMed  CAS  Google Scholar 

  153. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE et al (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12: 107–119

    PubMed  CAS  Google Scholar 

  154. Yang X, Li CL, Xu XL, Deng CX (1998) The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 95: 3667–3672

    PubMed  CAS  Google Scholar 

  155. Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ (1998) Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92: 797–808

    PubMed  CAS  Google Scholar 

  156. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang X-F (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol Cell Biol 19: 2495–2504

    PubMed  CAS  Google Scholar 

  157. Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94: 703–714

    PubMed  CAS  Google Scholar 

  158. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng CX (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J 18: 1280–1291

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Heldin, CH., Moustakas, A., Souchelnytskyi, S., Itoh, S., ten Dijke, P. (2001). Signal transduction mechanisms for members of the TGF-β family. In: Breit, S.N., Wahl, S.M. (eds) TGF-β and Related Cytokines in Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8354-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8354-2_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9531-6

  • Online ISBN: 978-3-0348-8354-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics