Skip to main content

Gene therapy approaches to immunosuppression

  • Chapter
Modern Immunosuppressives

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

  • 105 Accesses

Abstract

Gene therapy is defined as the delivery of genetic material in the form of DNA. Its purpose is to correct a missing or disturbed gene function associated with a pathophysiological situation in patients. It is attractive compared to the conventional pharmacological therapy, as it can be applied more locally and thus should have fewer side-effects. Somatic gene therapy, the delivery of genetic material in a non-hereditary fashion to mostly an adult target tissue has been persued by the research community for the past 10 years with only moderate success. The methodology of gene therapy must be improved before it becomes a clinical reality. This is in terms of improved efficiency of gene transfer to the target tissue, as well as in tighter control of gene expression. The primary focus of gene therapy will be in correcting genetic disorders followed by its application to so far unmet medical needs, e.g., cancer treatment. The present review summarises the progress which has been made in the past several years in the therapeutic area of transplantation and highlights the potential future applications of gene therapy in enhancing graft survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Qin L, Chavin KD, Ding Y, Woodward JE, Favaro JP, Lin J, Bromberg JS (1994) Gene transfer for transplantation. Prolongation of allograft survival with transforming growth factor-beta 1. Ann Surg 220: 508–518

    Article  PubMed  CAS  Google Scholar 

  2. Qin L, Ding Y, Bromberg JS (1996) Gene transfer of transforming growth factor-beta 1 prolongs murine cardiac allograft survival by inhibiting cell-mediated immunity. Hum Gene Ther 7: 1981–1988

    Article  PubMed  CAS  Google Scholar 

  3. Qin L, Chavin KD, Ding Y, Favaro JP, Woodward JE, Lin J, Tahara H, Robbins P, Shaked A, Ho DY et al (1995) Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model. Immunosuppression with TGF-beta 1 or vIL-10. Transplantation 59: 809–816

    PubMed  CAS  Google Scholar 

  4. Qin L, Chavin KD, Ding Y, Tahara H, Favaro JP, Woodward JE, Suzuki T, Robbins PD, Lotze MT, Bromberg JS (1996) Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J Immunol 156: 2316–2323

    PubMed  CAS  Google Scholar 

  5. Brauner R, Wu L, Laks H, Nonoyama M, Scholl F, Shvarts O, Berk A, Drinkwater DCJ, Wang JL (1997) Intracoronary gene transfer of immunosuppressive cytokines to cardiac allografts: method and efficacy of adenovirus-mediated transduction. J Thorac Cardiovasc Surg 113: 1059–1066

    Article  PubMed  CAS  Google Scholar 

  6. Brauner R, Nonoyama M, Laks H, Drinkwater DCJ, McCaffery S, Drake T, Berk AJ, Sen L, Wu L (1997) Intracoronary adenovirus-mediated transfer of immunosuppressive cytokine genes pro-longs allograft survival. J Thorac Cardiovasc Surg 114: 923–933

    Article  PubMed  CAS  Google Scholar 

  7. Kelley VR, Sukhatme VP (1999) Gene transfer in the kidney. Amer J Physiol 276: F1–F9

    PubMed  CAS  Google Scholar 

  8. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC (1995) A role for CD95 ligand in preventing graft rejection. Nature 377: 630–632

    Article  PubMed  CAS  Google Scholar 

  9. Swenson KM, Ke B, Wang T, Markowitz JS, Maggard MA, Spear GS, Imagawa DK, Goss JA, Busuttil RW, Seu P (1998) Fas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation 65: 155–160

    Article  PubMed  CAS  Google Scholar 

  10. Drazan KE, Olthoff KM, Wu L, Shen XD, Gelman A, Shaked A (1996) Adenovirus-mediated gene transfer in the transplant setting: early events after orthotopic transplantation of liver allografts expressing TGF-betal. Transplantation 62: 1080–1084

    Article  PubMed  CAS  Google Scholar 

  11. Drazan KE, Wu L, Olthoff KM, Jurim O, Busuttil RW, Shaked A (1995) Transduction of hepatic allografts achieves local levels of viral IL-10 which suppress alloreactivity in vitro. J Surg Res 59: 219–223

    Article  CAS  Google Scholar 

  12. Olthoff KM, Judge TA, Gelman AE, da SX, Hancock WW, Turka LA, Shaked A (1998) Adenovirus-mediated gene transfer into cold-preserved liver allografts: survival pattern and unresponsiveness following transduction with CTLA4Ig. Nat Med 4: 194–200

    Article  PubMed  CAS  Google Scholar 

  13. Kay MA, Holterman AX, Meuse L, Gown A, Ochs HD, Linsley PS, Wilson CB (1995) Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet 11: 191–197

    Article  PubMed  CAS  Google Scholar 

  14. Kay MA, Meuse L, Gown AM, Linsley P, Hollenbaugh D, Aruffo A, Ochs HD, Wilson CB (1997) Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc Natl Acad Sci USA 94: 4686–4691

    Article  PubMed  CAS  Google Scholar 

  15. Bilbao G, Contreras JL, Gomez NJ, Eckhoff DE, Mikheeva G, Krasnykh V, Hynes T, Thomas FT, Thomas JM, Curiel DT (1999) Genetic modification of liver grafts with an adenoviral vector encoding the Bcl-2 gene improves organ preservation. Transplantation 67: 775–783

    Article  PubMed  CAS  Google Scholar 

  16. Boehler A, Chamberlain D, Xing Z, Slutsky AS, Jordana M, Gauldie J, Liu M, Keshavjee S (1998) Adenovirus-mediated interleukin-10 gene transfer inhibits post-transplant fibrous airway obliteration in an animal model of bronchiolitis obliterans. Hum Gene Ther 9: 541–551

    Article  PubMed  CAS  Google Scholar 

  17. Yang Y, Trinchieri G, Wilson JM (1995) Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nat Med 1: 890–893

    Article  PubMed  CAS  Google Scholar 

  18. Jooss K, Turka LA, Wilson JM (1998) Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig. Gene Ther 5: 309–319

    Article  PubMed  CAS  Google Scholar 

  19. Hiratsuka M, Mora BN, Yano M, Mohanakumar T, Patterson GA (1999) Gene transfer of heat shock protein 70 protects lung grafts from ischemia-reperfusion injury. Ann Thorac Surg 67: 1421–1427

    Article  PubMed  CAS  Google Scholar 

  20. Chahine AA, Yu M, McKernan MM, Stoeckert C, Lau HT (1995) Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells. Transplantation 59: 1313–1318

    PubMed  CAS  Google Scholar 

  21. Yasuda H, Nagata M, Arisawa K, Yoshida R, Fujihira K, Okamoto N, Moriyama H, Mild M, Saito I, Hamada H et al (1998) Local expression of immunoregulatory IL-12p40 gene prolonged syngeneic islet graft survival in diabetic NOD mice. J Clin Invest 102: 1807–1814

    Article  PubMed  CAS  Google Scholar 

  22. Lau HT, Yu M, Fontana A, Stoeckert CJJ (1996) Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273: 109–112

    Article  PubMed  CAS  Google Scholar 

  23. Allison J, Georgiou HM, Strasser A, Vaux DL (1997) Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci USA 94: 3943–3947

    Article  PubMed  CAS  Google Scholar 

  24. Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3: 738–743

    Article  PubMed  CAS  Google Scholar 

  25. Judge TA, Desai NM, Yang Z, Rostami S, Alonso L, Zhang H, Chen Y, Markman JF, DeMateo RP, Barker CF et al (1998) Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival. Transplantation 66: 426–434

    Article  PubMed  CAS  Google Scholar 

  26. Fabrega AJ, Fasbender AJ, Struble S, Zabner J (1996) Cationic lipid-mediated transfer of the hIL10 gene prolongs survival of allogeneic hepatocytes in Nagase analbuminemic rats. Transplantation 62: 1866–1871

    Article  PubMed  CAS  Google Scholar 

  27. Hammel JM, Elfeki SK, Kobayashi N, Ito M, Cai J, Fearon DT, Graham FL, Fox IJ (1999) Transplanted hepatocytes infected with a complement receptor type 1 (CR1)-containing recombi-nant adenovirus are resistant to hyperacute rejection. Transplant Proc 31: 939

    Article  PubMed  CAS  Google Scholar 

  28. Barkats M, Bilang BA, Buc CM, Castel BM, Corti O, Finiels F, Horellou P, Revah F, Sabate O, Mallet J (1998) Adenovirus in the brain: recent advances of gene therapy for neurodegenerative diseases. Prog Neurobiol 55: 333–341

    Article  PubMed  CAS  Google Scholar 

  29. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU et al (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16: 1033–1039

    Article  PubMed  CAS  Google Scholar 

  30. Martinez SA, Bjorklund A (1997) Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci 20: 530–538

    Article  Google Scholar 

  31. Aebischer P, Schluep M, Deglon N, Joseph JM, Hirt L, Heyd B, Goddard M, Hammang JP, Zurn AD, Kato AC et al (1996) Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 2: 696–699

    Article  PubMed  CAS  Google Scholar 

  32. Deglon N, Heyd B, Tan SA, Joseph JM, Zum AD, Aebischer P (1996) Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C 12 myoblasts. Hum Gene Ther 7: 2135–2146

    Article  PubMed  CAS  Google Scholar 

  33. Andsberg G, Kokaia Z, Bjorklund A, Lindvall O, Martinez SA (1998) Amelioration of ischaemiainduced neuronal death in the rat striatum by NGF-secreting neural stem cells. Eur J Neurosci 10: 2026–2036

    Article  PubMed  CAS  Google Scholar 

  34. Ridet JL, Corti O, Pencalet P, Hanoun N, Hamon M, Philippon J, Mallet J (1999) Toward autologous ex vivo gene therapy for the central nervous system with human adult astrocytes. Hum Gene Ther 10: 271–280

    Article  PubMed  CAS  Google Scholar 

  35. Tuszynski MH, Roberts J, Senut MC, HS, Gage FH (1996) Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 3: 305–314

    PubMed  CAS  Google Scholar 

  36. Borlongan CV, Stahl CE, Cameron DF, Saporta S, Freeman TB, Cahill DW, Sanberg PR (1996) CNS immunological modulation of neural graft rejection and survival. Neurol Res 18: 297–304

    PubMed  CAS  Google Scholar 

  37. Okura Y, Tanaka R, Ono K, Yoshida S, Tanuma N, Matsumoto Y (1997) Treatment of rat hemiparkinson model with xenogeneic neural transplantation: tolerance induction by anti-T-cell antibodies. J Neurosci 48: 385–396

    CAS  Google Scholar 

  38. Sanberg PR, Borlongan CV, Saporta S, Cameron DF (1996) Testis-derived Sertoli cells survive and provide localized immunoprotection for xenografts in rat brain. Nat Biotechnol 14: 1692–1695

    Article  PubMed  CAS  Google Scholar 

  39. Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80: 35–47

    Article  PubMed  CAS  Google Scholar 

  40. Walther W, Stein U (1996) Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting. J Molec Med 74: 379–392

    Article  PubMed  CAS  Google Scholar 

  41. Jane SM, Cunningham JM, Vanin EF (1998) Vector development: a major obstacle in human gene therapy. Ann Med 30: 413–415

    Article  PubMed  CAS  Google Scholar 

  42. Peng KW (1999) Strategies for targeting therapeutic gene delivery. Mol Med Today 5: 448–453

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Gadient, R.A., Bühler, T., Luyten, M., Movva, N.R. (2001). Gene therapy approaches to immunosuppression. In: Schuurman, HJ., Feutren, G., Bach, JF. (eds) Modern Immunosuppressives. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8352-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8352-8_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9530-9

  • Online ISBN: 978-3-0348-8352-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics