Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 115 Accesses

Abstract

The first genetic lesions associated with Alzheimer’s disease were in the coding sequence of the β amyloid precursor protein (βAPP) [1]. Although these mutations account for a small proportion of familial Alzheimer (FAD) cases, they conceptually solidified the link between this protein and the pathology of the disease. As the source of the amyloid β peptide (Aβ) that accumulates in plaques, βAPP had garnered attention for several years. The mutations were immediately presumed to contribute to disease by modifying Aβ production, but increased understanding of the bioactivities of βAPP itself have led to models that do not depend on Aβ for Alzheimer pathogenesis. Both Aβ and non-amyloidogenic derivatives of βAPP can have an impact on proinflammatory glial activation. Indeed, the role of inflammatory reactions in Alzheimer’s has been lent additional credence by indications of such reactions in mice transgenic for βAPP. These interactions will be reviewed and discussed here in the context of cell biology; protein-protein interactions between Aβ and α2-macroglobulin or components of the complement cascade are addressed in accompanying chapters of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease.Trends Neurosci20: 154–159

    Article  PubMed  CAS  Google Scholar 

  2. Konig G, Monning U, Czech C, Prior R, Banati R, Schreiter-Gasser U, Bauer J, Masters CL, Beyreuther K (1992) Identification and differential expression of a novel alternative splice isoform of the beta A4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells.J Biol Chem267: 10804–10809

    PubMed  CAS  Google Scholar 

  3. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain.Nature398: 518–522

    Article  PubMed  Google Scholar 

  4. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity.Nature398: 513–517

    Article  PubMed  CAS  Google Scholar 

  5. Citron M, Diehl TS, Gordon G, Biere AL, Seubert P, Selkoe DJ (1996) Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities.Proc Natl Acad Sci USA93: 13170–13175

    Article  PubMed  CAS  Google Scholar 

  6. Figueiredo-Pereira ME, Efthimiopoulos S, Tezapsidis N, Buku A, Ghiso J, Mehta P, Robakis NK (1999) Distinct secretases, a cysteine protease and a serine protease, generate the C termini of amyloid beta-proteins Abetal-40 and Abetal-42, respectively.J Neurochem72: 1417–1422

    Article  PubMed  CAS  Google Scholar 

  7. Durkin JT, Murthy S, Husten EJ, Trusko SP, Savage MJ, Rotella DP, Greenberg BD, Siman R (1999) Rank-order of potencies for inhibition of the secretion of abeta40 and abeta42 suggests that both are generated by a single gamma-secretase.J Biol Chem274: 20499–20504

    Article  PubMed  CAS  Google Scholar 

  8. Jarrett JT, Berger EP, Lansbury PT, Jr. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease.Biochemistry32: 4693–4697

    Article  PubMed  CAS  Google Scholar 

  9. Snyder SW, Ladror US, Wade WS, Wang GT, Barrett LW, Matayoshi ED, Huffaker HJ, Krafft GA, Holzman TF (1994) Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths.Biophys J67: 1216–1228

    Article  PubMed  CAS  Google Scholar 

  10. Selkoe DJ, Yamazaki T, Citron M, Podlisny MB, Koo EH, Teplow DB, Haass C (1996) The role of APP processing and trafficking pathways in the formation of amyloid 13-protein.Ann NY Acad Sci777: 57–64

    Article  PubMed  CAS  Google Scholar 

  11. Paganetti PA, Lis M, Klafki HW, Staufenbiel M (1996) Amyloid precursor protein truncated at any of the gamma-secretase sites is not cleaved to beta-amyloid.J Neurosci Res46: 283–293

    Article  PubMed  CAS  Google Scholar 

  12. Mattson MP (1997) Cellular actions of 13-amyloid precursor protein, and its soluble and fibrillogenic peptide derivatives.Physiol Rev 771081–1132

    PubMed  CAS  Google Scholar 

  13. Nukina N, Kanazawa I, Mannen T, Uchida Y (1992) Accumulation of amyloid precursor protein and beta-protein immunoreactivities in axons injured by cerebral infarct.Gerontology38: 10–14

    Article  PubMed  CAS  Google Scholar 

  14. Suenaga T, Ohnishi K, Nishimura M, Nakamura S, Akiguchi I, Kimura J (1994) Bundles of amyloid precursor protein-immunoreactive axons in human cerebrovascular white matter lesions.Acta Neuropathol87: 450–455

    Article  PubMed  CAS  Google Scholar 

  15. Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1994) Staining of amyloid precursor protein to study axonal damage in mild head injury.Lancet344: 1055–1056

    Article  PubMed  CAS  Google Scholar 

  16. Sola C, Garcia-Ladona FJ, Mengod G, Probst A, Frey P, Palacios JM (1993) Increased levels of the Kunitz protease inhibitor-containing beta APP mRNAs in rat brain following neurotoxic damage.Brain Res Mol Brain Res17: 41–52

    Article  PubMed  CAS  Google Scholar 

  17. Grilli M, Goffi F, Memo M, Spano P (1996) Interleukin-1β and glutamate activate the NF-xB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures.J Biol Chem271: 15002–15007

    Article  PubMed  CAS  Google Scholar 

  18. Chen ST, Garey LJ, Patel AJ, Malik Q, Jen LS (1998) Factors that affect the expression of β-amyloid precursor protein immunoreactivity in the rat retina.J Neuropathol Exp Neurol57: 16–20

    Article  PubMed  CAS  Google Scholar 

  19. Shoji M, Hirai S, Yamaguchi H, Harigaya Y, Kawarabayashi T (1990) Amyloid beta-protein precursor accumulates in dystrophic neurites of senile plaques in Alzheimer-type dementia.Brain Res512: 164–168

    Article  PubMed  CAS  Google Scholar 

  20. Joachim C, Games D, Morris J, Ward P, Frenkel D, Selkoe D (1991) Antibodies to non-beta regions of the beta-amyloid precursor protein detect a subset of senile plaques.Am J Pathol138: 373–384

    PubMed  CAS  Google Scholar 

  21. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein.Proc Natl Acad Sci USA88: 7552–7556

    Article  PubMed  CAS  Google Scholar 

  22. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H, Nilsson LN (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5’-untranslated region sequences.J Biol Chem274: 6421–6431

    Article  PubMed  CAS  Google Scholar 

  23. Koistinaho J, Pyykonen I, Keinanen R, Hokfelt T (1996) Expression of beta-amyloid precursor protein mRNAs following transient focal ischaemia.Neuroreport7: 2727–2731

    Article  PubMed  CAS  Google Scholar 

  24. Siman R, Card JP, Nelson RB, Davis LG (1989) Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage.Neuron3: 275–285

    Article  PubMed  CAS  Google Scholar 

  25. Willoughby DA, Johnson SA, Pasinetti GM, Tocco G, Najm I, Baudry M, Finch CE (1992) Amyloid precursor protein mRNA encoding the Kunitz protease inhibitor domain is increased by kainic acid-induced seizures in rat hippocampus.Exp Neurol118: 332–339

    Article  PubMed  CAS  Google Scholar 

  26. Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM (1995) Increased beta-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: association with proliferation of astrocytes.Eur J Neurosci7: 501–510

    Article  PubMed  CAS  Google Scholar 

  27. Goldgaber D, Harris HW, Hla T, Maciag T, Donnelly RJ, Jacobsen JS, Vitek MP, Gajdusek DC (1989) Interleukin-1 regulates synthesis of amyloid β-protein precursor mRNA in human endothelial cells.Proc Natl Acad Sci USA86: 7606–7610

    Article  PubMed  CAS  Google Scholar 

  28. Lahiri DK, Nall C (1995) Promoter activity of the gene encoding the β-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. MolBrain Res32: 233–240

    CAS  Google Scholar 

  29. Ringheim GE, Szczepanik AM, Petko W, Burgher KL, Zhu SZ, Chao CC (1998) En-hancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex.Brain ResMolBrain Res55: 35–44

    CAS  Google Scholar 

  30. Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor.Proc Natl Acad Sci USA89: 10075–10078

    Article  PubMed  CAS  Google Scholar 

  31. Vasilakos JP, Carroll RT, Emmerling MR, Doyle PD, Davis RE, Kim KS, Shivers BD (1994) Interleukin-113 dissociates 13-amyloid precursor protein and 13-amyloid peptide secretion.FEBS Lett354: 289–292

    Article  PubMed  CAS  Google Scholar 

  32. Dash PK, Moore AN (1995) Enhanced processing of APP induced by IL-1 beta can be reduced by indomethacin and nordihydroguaiaretic acid.Biochem Biophys Res Commun208: 542–548

    Article  PubMed  CAS  Google Scholar 

  33. Seguchi K, Kataoka H, Uchino H, Nabeshima K, Koono M (1999) Secretion of protease nexin-II/amyloid beta protein precursor by human colorectal carcinoma cells and its modulation by cytokines/growth factors and proteinase inhibitors.Biol Chem380: 473–483

    Article  PubMed  CAS  Google Scholar 

  34. Jolly-Tornetta C, Gao ZY, Lee VM, Wolf BA (1998) Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons.J Biol Chem273: 14015–14021

    Article  PubMed  CAS  Google Scholar 

  35. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors.Science258: 304–307

    Article  PubMed  CAS  Google Scholar 

  36. Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor.J Biol Chem273: 27765–27767

    Article  PubMed  CAS  Google Scholar 

  37. Merlos-Suarez A, Fernandez-Larrea J, Reddy P, Baselga J, Arribas J (1998) Pro-tumor necrosis factor-alpha processing activity is tightly controlled by a component that does not affect notch processing.J Biol Chem273: 24955–24962

    Article  PubMed  CAS  Google Scholar 

  38. Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression.Brain Pathol8: 65–72

    Article  PubMed  CAS  Google Scholar 

  39. Salinero O, Moreno-Flores MT, Ceballos ML, Wandosell F (1997) beta-Amyloid peptide induced cytoskeletal reorganization in cultured astrocytes.J Neurosci Res47: 216–223

    Article  PubMed  CAS  Google Scholar 

  40. Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ (1998) Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release.Brain Res785: 195–206

    Article  PubMed  CAS  Google Scholar 

  41. Meske V, Hamker U, Albert F, Ohm TG (1998) The effects of beta/A4-amyloid and its fragments on calcium homeostasis, glial fibrillary acidic protein and S100beta staining, morphology and survival of cultured hippocampal astrocytes.Neuroscience85: 1151–1160

    Article  PubMed  CAS  Google Scholar 

  42. Pike CJ, Cummings BJ, Monzavi R, Cotman CW (1994) Beta-amyloid-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzheimer’s disease.Neuroscience63: 517–531

    Article  PubMed  CAS  Google Scholar 

  43. Murphy GM, Jr., Yang L, Cordell B (1998) Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells.J Biol Chem273: 20967–20971

    Article  PubMed  CAS  Google Scholar 

  44. Parpura-Gill A, Beitz D, Uemura E (1997) The inhibitory effects of beta-amyloid on glutamate and glucose uptakes by cultured astrocytes.Brain Res754: 65–71

    Article  PubMed  CAS  Google Scholar 

  45. Abe K, Saito H (1998) Amyloid beta protein inhibits cellular MTT reduction not by suppression of mitochondrial succinate dehydrogenase but by acceleration of MTT for-mazan exocytosis in cultured rat cortical astrocytes.Neurosci Res31: 295–305

    Article  PubMed  CAS  Google Scholar 

  46. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr., Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by β-amyloid protein and interferon-y.Nature374: 647–650

    Article  PubMed  CAS  Google Scholar 

  47. Gitter BD, Cox LM, Rydel RE, May PC (1995) Amyloid β peptide potentiates cytokine secretion by interleukin-113-activated human astrocytoma cells.Proc Natl Acad Sci USA92 (23): 10738–10741

    Article  PubMed  CAS  Google Scholar 

  48. Rossi F, Bianchini E (1996) Synergistic induction of nitric oxide by 13-amyloid and cytokines in astrocytes.Biochem Biophys Res Commun225: 474–478

    Article  PubMed  CAS  Google Scholar 

  49. Haga S, Ikeda K, Sato M, Ishii T (1993) Synthetic Alzheimer amyloid beta/A4 peptides enhance production of complement C3 component by cultured microglial cells.Brain Res601: 88–94

    Article  PubMed  CAS  Google Scholar 

  50. McDonald DR, Brunden KR, Landreth GE (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia.J Neurosci17: 2284–2294

    PubMed  CAS  Google Scholar 

  51. Van Muiswinkel FL, Raupp SF, de Vos NM, Smits HA, Verhoef J, Eikelenboom P, Nottet HS (1999) The amino-terminus of the amyloid-beta protein is critical for the cellular binding and consequent activation of the respiratory burst of human macrophages.J Neuroimmunol96: 121–130

    Article  PubMed  Google Scholar 

  52. Noda M, Nakanishi H, Akaike N (1999) Glutamate release from microgliaviaglutamate transporter is enhanced by amyloid-beta peptide.Neuroscience92: 1465–1474

    Article  PubMed  CAS  Google Scholar 

  53. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by β-amyloid peptidesin vitrothe role of peptide assembly state.J Neurosci13: 1676–1687

    PubMed  CAS  Google Scholar 

  54. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides.Science250: 279–282

    Article  PubMed  CAS  Google Scholar 

  55. Giulian D, Haverkamp LJ, Yu JH, Karshin W, Tom D, Li J, Kirkpatrick J, Kuo LM, Roher AE (1996) Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia.J Neurosci16: 6021–6037

    PubMed  CAS  Google Scholar 

  56. Velazquez P, Cribbs DH, Poulos TL, Tenner AJ (1997) Aspartate residue 7 in amyloid beta-protein is critical for classical complement pathway activation: implications for Alzheimer’s disease pathogenesis.Nat Med3: 77–79

    Article  PubMed  CAS  Google Scholar 

  57. Webster S, Bonne11 B, Rogers J (1997) Charge-based binding of complement component C1q to the Alzheimer amyloid beta-peptide.Am J Pathol150: 1531–1536

    PubMed  CAS  Google Scholar 

  58. Lalowski M, Golabek A, Lemere CA, Selkoe DJ, Wisniewski HM, Beavis RC, Frangione B, Wisniewski T (1996) The “nonamyloidogenic” p3 fragment (amyloid betal7–42) is a major constituent of Down’s syndrome cerebellar preamyloid.J Biol Chem271: 7–42

    Article  PubMed  CAS  Google Scholar 

  59. Kida E, Wisniewski KE, Wisniewski HM (1995) Early amyloid-β deposits show different immunoreactivity to the amino-and carboxy-terminal regions of β-peptide in Alzheimer’s disease and Down’s syndrome brain.Neurosci Lett193: 105–108

    Article  PubMed  CAS  Google Scholar 

  60. Pike CJ, Overman MJ, Cotman CW (1995) Amino-terminal deletions enhance aggregation of β-amyloid peptidesin vitro. J Biol Chem270: 23895–23898

    CAS  Google Scholar 

  61. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J et al (1996) RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease.Nature382: 685–691

    Article  PubMed  CAS  Google Scholar 

  62. El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils.Nature382: 716–719

    Article  PubMed  Google Scholar 

  63. McDonald DR, Bamberger ME, Combs CK, Landreth GE (1998) beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes.J Neurosci18: 4451–4460

    PubMed  CAS  Google Scholar 

  64. Huang F, Buttini M, Wyss-Coray T, McConlogue L, Kodama T, Pitas RE, Mucke L (1999) Elimination of the class A scavenger receptor does not affect amyloid plaque formation or neurodegeneration in transgenic mice expressing human amyloid protein precursors.Am J Pathol155:1741–1747

    Article  PubMed  CAS  Google Scholar 

  65. Du Yan S, Zhu H, Fu J, Yan S, Roher A, Tourtellotte WW, Rahavashisth T, Chen X, Godman GC, Stern D et al (1997) Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease.Proc Natl Acad Sci USA94: 5296–5301

    Article  PubMed  CAS  Google Scholar 

  66. Tan J, Town T, Paris D, Suo Z, Song S, Yu H, Kundtz A, Crawford F, Mullan M (1998) Ligation of a specific CD molecule initiates activation of microglial cells by Alzheimer’s β-amyloid peptides.Soc Neurosci Abstr24: 1752

    Google Scholar 

  67. Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA, Mullan M (1999) Microglial activation resulting from CD40–CD40L interaction after β-amyloid stimulation.Science286: CD40–CD40

    Article  PubMed  CAS  Google Scholar 

  68. Pyo H, Jou I, Jung S, Hong S, Joe EH (1998) Mitogen-activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia.Neuroreport9: 871–874

    Article  PubMed  CAS  Google Scholar 

  69. Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins.J Neurosci19: 928–939

    PubMed  CAS  Google Scholar 

  70. Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress.J Biol Chem272: 17810–17814

    Article  PubMed  CAS  Google Scholar 

  71. Nakai M, Hojo K, Taniguchi T, Terashima A, Kawamata T, Hashimoto T, Maeda K, Tanaka C (1998) PKC and tyrosine kinase involvement in amyloid beta (25–35)-induced chemotaxis of microglia.Neuroreport9: 25–35

    Article  PubMed  CAS  Google Scholar 

  72. Salinero O, Moreno-Flores MT, Wandosell F (1997) Okadaic acid modulates the cytoskeleton changes induced by amyloid peptide (25–35) in cultured astrocytes.Neuroreport8: 25–35

    Article  PubMed  CAS  Google Scholar 

  73. Ard MD, Cole GM, Wei J, Mehrle AP, Fratkin JD (1996) Scavenging of Alzheimer’s amyloid beta-protein by microglia in culture.J Neurosci Res43: 190–202

    Article  PubMed  CAS  Google Scholar 

  74. Kopec KK, Carroll RT (1998) Alzheimer’s beta-amyloid peptide 1–42 induces a phagocytic response in murine microglia.J Neurochem71: 1–42

    Article  PubMed  CAS  Google Scholar 

  75. Cruz L, Urbanc B, Buldyrev SV, Christie R, Gomez-Isla T, Havlin S, McNamara M, Stanley HE, Hyman BT (1997) Aggregation and disaggregation of senile plaques in Alzheimer disease.Proc Natl Acad Sci USA94: 7612–7616

    Article  PubMed  CAS  Google Scholar 

  76. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.Nature400: 173–177

    Article  PubMed  CAS  Google Scholar 

  77. Hoke A, Canning DR, Malemud CJ, Silver J (1994) Regional differences in reactive gliosis induced by substrate-bound beta-amyloid.Exp Neurol130: 56–66

    Article  PubMed  CAS  Google Scholar 

  78. Shaffer LM, Dority MD, Gupta-Bansal R, Frederickson RC, Younkin SG, Brunden KR (1995) Amyloid β protein (Aβ) removal by neuroglial cells in culture.Neurobiol Aging16: 737–745

    Article  PubMed  CAS  Google Scholar 

  79. Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation.J Biol Chem273: 32730–32738

    Article  PubMed  CAS  Google Scholar 

  80. Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease.Am J Pathol133: 456–463

    PubMed  CAS  Google Scholar 

  81. Barger SW, Mattson MP (1996) Induction of neuroprotective KB-dependent transcription by secreted form of the Alzheimer’s β-amyloid precursor.Mol Brain Res40: 116–126

    Article  PubMed  CAS  Google Scholar 

  82. Barger SW, Harmon AD (1997) Microglial activation by secreted Alzheimer amyloid precursor protein and modulation by apolipoprotein E.Nature388: 878–881

    Article  CAS  Google Scholar 

  83. Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M, Mattson MP (1996) Increased activity-regulating and neuroprotective efficacy of a-secretasederived secreted amyloid precursor protein conferred by a c-terminal heparin-binding domain.J Neurochem67: 1882–1896

    Article  PubMed  CAS  Google Scholar 

  84. Van Nostrand WE, Wagner SL, Shankle WR, Farrow JS, Dick M, Rozemuller JM, Kuiper MA, Wolters EC, Zimmerman J, Cotman CW (1992) Decreased levels of solu-ble amyloid p-protein precursor in cerebrospinal fluid of live Alzheimer disease patients.Proc Natl Acad Sci USA89: 2551–2555

    Article  PubMed  Google Scholar 

  85. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution.J Neuropathol Exp Neurol54: 276–281

    Article  PubMed  CAS  Google Scholar 

  86. Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D, Frebourg T, Checler F (1999) Unusual phenotypic alteration of 3 amyloid precursor protein (βAPP) maturation by a new Val-715 → Met βAPP-770 mutation responsible for probable early-onset Alzheimer’s disease.Proc Natl Acad Sci USA96: 4119–4124

    Article  PubMed  CAS  Google Scholar 

  87. Barger SW, Mattson MP (1997) Isoform-specific modulation by apolipoprotein E of the activities of secreted β-amyloid precursor protein.J Neurochem69: 60–67

    Article  PubMed  CAS  Google Scholar 

  88. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimers disease.Annu Rev Med47: 387–400

    Article  PubMed  CAS  Google Scholar 

  89. Meyer MR, Tschanz JT, Norton MC, Welsh-Bohmer KA, Steffens DC, Wyse BW, Breitner JC (1998) APOE genotype predicts when - not whether - one is predisposed to develop Alzheimer disease.Nat Genet19: 321–322

    Article  PubMed  CAS  Google Scholar 

  90. Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WST (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression.J Neurosci20: 149–155

    PubMed  Google Scholar 

  91. Nishimura I, Uetsuki T, Dani SU, Ohsawa Y, Saito I, Okamura H, Uchiyama Y, Yoshikawa K (1998) Degenerationin vivoof rat hippocampal neurons by wild-type Alzheimer amyloid precursor protein overexpressed by adenovirus-mediated gene transfer.J Neurosci18: 2387–2398

    PubMed  CAS  Google Scholar 

  92. Giulian D, Haverkamp LJ, Li J, Karshin WL, Yu J, Tom D, Li X, Kirkpatrick JB (1995) Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain.Neurochem Int27: 119–137

    Article  PubMed  CAS  Google Scholar 

  93. Klegeris A, McGeer PL (1997) β-amyloid protein enhances macrophage production of oxygen free radicals and glutamate.J Neurosci Res49: 229–235

    Article  PubMed  CAS  Google Scholar 

  94. Barger SW, Basile AS (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange. JNeurochem78: 846–854

    Google Scholar 

  95. Donnelly RJ, Friedhoff AJ, Beer B, Blume AJ, Vitek MP (1990) Interleukin-1 stimulates the beta-amyloid precursor protein promoter.Cell Mol Neurobiol 10485–495

    Article  PubMed  CAS  Google Scholar 

  96. Yang Y, Quitschke WW, Brewer GJ (1998) Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species.Brain Res Mol Brain Res60: 40–49

    Article  PubMed  CAS  Google Scholar 

  97. Schmitt TL, Steiner E, Klinger P, Sztankay A, Grubeck-Loebenstein B (1996) The production of an amyloidogenic metabolite of the Alzheimer amyloid beta precursor protein (APP) in thyroid cells is stimulated by interleukin 1 beta, but inhibited by interferon gamma.J Clin Endocrinol Metab81: 1666–1669

    Article  PubMed  CAS  Google Scholar 

  98. Dyrks T, Monning U, Beyreuther K, Turner J (1994) Amyloid precursor protein secretion and beta A4 amyloid generation are not mutually exclusive.FEBS Lett349: 210–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Barger, S.W. (2001). Proinflammatory actions of derivatives of the β amyloid precursor protein. In: Rogers, J. (eds) Neuroinflammatory Mechanisms in Alzheimer’s Disease Basic and Clinical Research. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8350-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8350-4_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9529-3

  • Online ISBN: 978-3-0348-8350-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics