Skip to main content

Calcium signaling cascades, antidepressants and major depressive disorders

  • Chapter
Antidepressants

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

  • 230 Accesses

Abstract

The discovery of effective antidepressants among the monoamine oxidase inhibitors and tricyclic compounds inhibiting monoamine uptake stimulated and drove research on the actions of antidepressants and the pathophysiology of major depression for nearly two decades (Stone, 1983). Newly discovered compounds with selectivity to antagonize the reuptake of serotonin have driven this research in recent years (Caldecott-Hazard et al., 1991; Charney, 1998; Maj et al., 1984). However, the response rate with any given antidepressant treatment has remained essentially unchanged since the early 1960’s. Regardless of whether patients are prescribed monoamine oxidase inhibitors, tricyclic compounds or serotonin reuptake inhibitors, response rates hover between 60-65%. Moreover, in all cases, 3-6 weeks of drug administration is required to produce a therapeutic response, suggesting the agency of factors other than or in addition to the acute effects of these drugs (Charney, 1998; Oswald et al., 1972). Given the difficulties in maintaining patients in treatment after unsuccessful drug trials and the risk of self-injurious behavior and suicide until remission of depressive symptoms, the need for rapidly acting antidepressants with high response rates remains as pressing now as it was 40 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F (1993) Plasma and platelet excitatory amino acids in psychiatric disorders. Neuroscience 55: 511–519

    Article  Google Scholar 

  • Banerjee SP, Kung LS, Riggi SJ, Chanda SK (1977) Development of beta adrenergic receptor subsensitivity by antidepressants. Nature 268: 455–456

    Article  PubMed  CAS  Google Scholar 

  • Bergstom DA, Kellar KJ (1979) Effect of electoconvulsive shock on monoaminergic receptor binding in rat brain. Nature 278: 464–466

    Article  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS and Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Bernard J, Ohayon M, Massicotte G (1994) Modulation of the AMPA receptor by phospholipase A2: effect of the antidepressant trimipramine. Psychiatry Res 51 (2): 107–114

    Article  PubMed  CAS  Google Scholar 

  • Bouron A, Chatton JY (1999) Acute application of the tricyclic antidepressant desipramine presynaptically stimulates the exocytosis of glutamate in the hippocampus. Neuroscience 90 (3): 729–736

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JF, Clausing P, Gough B, Slikker W Jr, Holson RR (1995) Nitric oxide regulation of methamphetamine-induced dopamine release in caudate/putamen. Brain Res 699 (1): 62–70

    Article  PubMed  CAS  Google Scholar 

  • Briley M, Prost JF, Moret C (1996) Preclinical pharmacology of milnacipran. !nt Clin Psychopharmacol 11 Supp14: 9–14

    Article  Google Scholar 

  • Cai Z, McCaslin PP (1992) Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduce kainate-and N-methyl-D-aspartate-induced intracellular Ca2+ levels in neuronal culture. Eur J Pharmacol 219 (1): 53–57

    Article  PubMed  CAS  Google Scholar 

  • Caldecott-Hazard S, Morgan DG, DeLeon-Jones F, Overstreet DH, Janowsky D (1991) Clinical and biochemical aspects of depressive disorders - II. Transmitter/receptor theories. Synapse 9: 251–301

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Corrodi H, Fuxe K, Hokfelt T (1969a) Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-alphaethyl-meta-tyramine. Eur J Pharmacol 5 (4): 357–366

    Article  CAS  Google Scholar 

  • Carlsson A, Corrodi H, Fuxe K, Hokfelt T (1969b) Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4, alpha-dimethyl-metatyramine. Eur J Pharmacol 5 (4): 367–373

    Article  CAS  Google Scholar 

  • Carlsson A, Fuxe K, Ungerstedt U (1968) The effect of imipramine on central 5-hydroxytryptamine neurons. J Pharm Pharmacol 20 (2): 150–151

    Article  CAS  Google Scholar 

  • Carlsson A, Jonason J, Lindqvist M, Fuxe K (1969e) Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipramine. Brain Res 12 (2): 456–460

    Article  CAS  Google Scholar 

  • Carman JS, Post RM, Goodwin FK, Bunney WE (1977) Calcium and electroconvulsive therapy in severe depressive illness. Biol Psychiatry 12: 5–17

    PubMed  CAS  Google Scholar 

  • Carman JS, Wyatt RJ (1977) Alterations in cerebrospinal fluid and serum total calcium with changes in psychiatric state. In: E Usdin et al (eds). Neuroregulators and psychiatric disorders. New York, Oxford Univ Press

    Google Scholar 

  • Carman JS, Wyatt RJ (1979) Calcium: Bivalent cation in the bivalant psychoses. Biol Psychiatry 14: 295–336

    PubMed  CAS  Google Scholar 

  • Charney DS (1998) Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 59 Suppl 14: 11–14

    PubMed  CAS  Google Scholar 

  • Clark JA, Davidson LJ, Ferguson HC (1962) Psychosis in hypoparathyroidism. J Mental Sci 108: 811–815

    CAS  Google Scholar 

  • Cogan MG, Covey CM, Arieff AI, Wisniewski A, Clark OH, Lazarowitz V, Leach W (1978) Central nervous system manifestations of hyperparathyroidism. Am J Med 65 (6): 963–970

    CAS  Google Scholar 

  • Czyrak A, Mogilnicka E, Maj J (1989) Dihydropyridine calcium channel antagonists as anti-depressant drugs in mice and rats. Neuropharmacology 3: 229–233

    Article  Google Scholar 

  • Dubovsky SL (1993) Calcium Antagonists in Manic-Depressive Illness. Neuropsychobiology 27: 184–192

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky SL, Christiano J, Daniell LC, Franks RD, Murphy J, Adler L, Baker N, Harris RA (1989) Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch Gen Psychiatry 46 (7): 632–638

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky SL, Franks RD, Schrier D (1985) Phenelzinc-induced hypomania: Effect of verapamil. Biol Psychiatry 20: 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54 (7): 597–606

    Article  PubMed  CAS  Google Scholar 

  • Eiduson S, Brill NQ, Crumpton E (1960) The effect of electro-convulsive therapy on spinal fluid constituents. JMental Sci 106: 692 698

    Google Scholar 

  • Faludi G, Tekes K, Tothfalusi L (1994) Comparative study of platelet 3H-paroxetine and 3Himipramine binding in panic disorder patients and healthy controls. J Psychiatry Neurosci 19 (2): 109–113

    PubMed  CAS  Google Scholar 

  • Faragalla FF, Flach FF (1970) Studies of mineral metabolism in mental depression. I. The effects of imipramine and electric convulsive therapy on calcium balance and kinetics. JNery Ment Dis 151 (2): 120–129

    Article  CAS  Google Scholar 

  • Filip M, Przegalinski E (1998) The role of the nitric oxide (NO) pathway in the discriminative stimuli of amphetamine and cocaine. Pharmacol Biochem Behav 59 (3): 703–708

    Article  PubMed  CAS  Google Scholar 

  • Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxctinc is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32 (4): 653–658

    PubMed  CAS  Google Scholar 

  • Flach FF (1964) Calcium metabolism in states of depression. BrJPsychiatr 110: 588–593 Flach FF (1966) The impact of pharmacotherapy on psychiatric practice and research. Ment Hyg 50 (4): 570–573

    Google Scholar 

  • Flach FF, Liang E, Stokes PE (1960) The effects of electic convulsive treatments on nitrogen, calcium, and phosphorus. J Mental.Sci 106: 638–647

    CAS  Google Scholar 

  • Glowinski J, Axelrod J (1964) Inhibition of tritiated noradrenaline in intact rat brain by imipramine and structurally related compounds. Nature 204: 1318–1319

    Article  PubMed  CAS  Google Scholar 

  • Golembiowska K, Zylewska A (1999) Effect of antidepressant drugs on veratridine-evoked glutamate and aspartate release in rat prefrontal cortex. Pol J Pharmacol 51 (1): 63–70

    PubMed  CAS  Google Scholar 

  • Gour KN, Chaudry HM (1957) Study of calcium metabolism in electric convulsive therapy (ECT) in certain. J Mental Sci 103: 275–285

    CAS  Google Scholar 

  • Grecksch G, Zhou D, Franke C, Schroder U, Sabel B, Becker A, Huether G (1997) Influence of olfactory bulbectomy and subsequent imipramine treatment on 5-hydroxytryptaminergic presynapses in the rat frontal cortex: behavioural correlates. BrJPharmacol 122 (8): 1725–1731

    CAS  Google Scholar 

  • Guevara-Guzman R, Emson PC, Kendrick KM (1994) Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. JNeurochem 62 (2): 807–810

    Article  CAS  Google Scholar 

  • Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur JPharmacol 372: 207–213

    Article  CAS  Google Scholar 

  • Harvey BE (1996) Affective disorders and nitric oxide: A role in pathways to relapse and refractoriness? Human Psychopharmacology 11: 309–319

    Article  CAS  Google Scholar 

  • Hertting G, Axelrod J, Whitby LG (1961) Effect of drugs on the uptake and metabolism of H3-norepinephrine. JPharmacol Exp Ther 134: 146–153

    CAS  Google Scholar 

  • Huether G, Zhou D, Ruther E (1997) Long-term modulation of presynaptic 5-HT-output: experimentally induced changes in cortical 5-HT-transporter density, tryptophan hydroxylase content and 5-HT innervation density. JNeural Transm 104 (10): 993–1004

    Article  CAS  Google Scholar 

  • Jimerson DC, Post RM, Carman JS, van Kammen DP, Wood JH, Goodwin FK, Bunney WE (1979) CSF Calcium: Clinical corellates in affective illness and schizophrenia. Biol Psychiatry 14: 37–51

    PubMed  CAS  Google Scholar 

  • Karolewicz B, Bruce KH, Lee B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 2. Chronic treatment results in downregulation of cortical ß-adrenoceptors. Eur J Pharmacol 372: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74 (3): 299–316

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH (1982a) Effects of amitriptyline on serum glutamate and free tryptophan in rats. Arch Psychiatr Nervenkr 232 (5): 391–394

    Article  CAS  Google Scholar 

  • Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH (1982b) Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr 232 (4): 299–304

    Article  CAS  Google Scholar 

  • Klein DF, Davis JM (1969) Diagnosis and treatment of psychiatric disorders, Baltimore,MD, The Williams and Wilkins Co.

    Google Scholar 

  • Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, Ordway GA (1997) Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. JNeurosci 17 (21): 8451–8458

    CAS  Google Scholar 

  • Knapp S, Mandell AJ (1983) Lithium and chlorimipramine differentially alter the stability properties of tryptophan hydroxylase as seen in allosteric and scattering kinetics. Psychiatry Res 8 (4): 311–323

    Article  PubMed  CAS  Google Scholar 

  • Kostowski W, Dyr W, Pucilowski O (1990) Activity of diltiazem and nifedipine in some animal models of depression. Pol JPharmacol Pharm 42 (2): 121–127

    CAS  Google Scholar 

  • Layer RT, Popik P, Olds T, Skolnick P (1995) Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmacol Biochem Behav 52 (3): 621–627

    Article  PubMed  CAS  Google Scholar 

  • Levine J, Stein D, Rapoport A, Kurtzman L (1999) High serum and cerebrospinal fluid Ca/Mg ratio in recently hospitalized acutely depressed patients. Neuropsychobiology 39 (2): 63–70

    Article  PubMed  CAS  Google Scholar 

  • Lin AM, Kao LS, Chai CY (1995) Involvement of nitric oxide in dopaminergic transmission in rat striatum: an in vivo electrochemical study. JNeurochem 65 (5): 2043–2049

    Article  CAS  Google Scholar 

  • Linder J, Brismar K, Beck-Friis J, Saaf J, Wetterberg L (1989) Calcium and magnesium concentrations in affective disorder: difference between plasma and serum in relation to symptoms. Acta Psychiatr Scand 80 (6): 527–537

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpe S (1998) Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr Scand 97 (4): 302–308

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Klimek V, Golembiowska K, Rogoz Z, Skuza G (1993) Central effects of repeated treatment with CGP 37849, a competitive NMDA receptor antagonist with potential antidepressant activity. Pol JPharmacol 45 (5–6): 455–466

    CAS  Google Scholar 

  • Maj J, Przegalinski E, Mogilnicka E (1984) Hypotheses concerning the mechanism of action of antidepressant drugs. Rev Physiol Biochem Pharmacol 100: 1–74

    PubMed  CAS  Google Scholar 

  • Maj I, Rogoz Z, Skuza G (1991) Antidepressant drugs increase the locomotor hyperactivity induced by MK-801 in rats. JNeural Transm Gen Sect 85 (3): 169–179

    Article  CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G (1992a) The effects of combined treatment with MK-801 and antidepressant drugs in the forced swimming test in rats. Pol J Pharmacol Pharm 44 (3): 217–226

    CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Kolodziejczyk K (1995) Some central effects of GYKI 52466, a non-competitive AMPA receptor antagonist. Pol J Pharmacol 47 (6): 501–507

    PubMed  CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1992b) The effect of antidepressant drugs on the locomotor hyperactivity induced by MK-801, a non-competitive NMDA receptor antagonist. Neuropharmacology 31 (7): 685–691

    Article  CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1992c) The effect of CGP 37849 and CGP 39551, competitive NMDA receptor antagonists, in the forced swimming test. Pol J Pharmacol Pharm 44 (4): 337–346

    CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1992d) Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 2 (1): 37–41

    Article  CAS  Google Scholar 

  • Martin P, Laurent S, Massol J, Childs M, Puech AJ (1989) Effects of dihydropyridine drugs on reversal by imipramine of helpless behavior in rats. Eur J Pharmacol 162: 185–188

    Article  PubMed  CAS  Google Scholar 

  • Massicotte G, Bernard J, Ohayon M (1993) Chronic effects of trimipramine, an antidepressant, on hippocampal synaptic plasticity. Behav Neural Biol 59 (2): 100–106

    Article  PubMed  CAS  Google Scholar 

  • Mauri MC, Ferrara A, Boscati L, Bravin S, Zamberlan F, Alecci M, Invernizzi G (1998) Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37 (3): 124–129

    Article  PubMed  CAS  Google Scholar 

  • McCaslin PP, Yu XZ, Ho IK, Smith TG (1992) Amitriptyline prevents N-methyl-D-aspartate (NMDA)-induced toxicity, does not prevent NMDA-induced elevations of extracellular glutamate, but augments kainate-induced elevations of glutamate. J Neurochem 59 (2): 401–405

    Article  PubMed  CAS  Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel from cloned cDNAs. Nature 357: 70–74

    Article  PubMed  CAS  Google Scholar 

  • Melia KR, Duman RS (1991) Involvement of corticotropin-releasing factor in chronic stress regulation of the brain noradrenergic system. Proc NatlAcad Sci 88: 8382–8386

    Article  CAS  Google Scholar 

  • Melia KR, Nestler EJ, Duman RS (1992a) Chronic imipramine treatment normalizes levels of tyrosine hydroxylase in the locus coeruleus of chronically stressed rats. Psychopharmacology (Berl) 108 (1–2): 23–26

    Article  CAS  Google Scholar 

  • Melia KR, Rasmussen K, Terwilliger RZ, Haycock JW, Nestler EJ, Duman RS (1992b) Coordinate regulation of the cyclic AMP system with firing rate and expression of tyrosine hydroxylase in the rat locus coeruleus: effects of chronic stress and drug treatments. JNeurochem 58 (2): 494–502

    Article  CAS  Google Scholar 

  • Mellerup ET, Bech P, Sorensen T, Frederiksen AF, Rafaelsen OJ (1979) Calcium and electroconvulsive therapy of depressed patients. Biol Psychiatry 14 (4): 711–714

    PubMed  CAS  Google Scholar 

  • Meloni D, Gambarana C, De Montis MG, Dal Pra P, Taddei I, Tagliamonte A (1993) Dizocilpine antagonizes the effect of chronic imipramine on learned helplessness in rats. Pharmacol Biochem Behav 46 (2): 423–426

    Article  PubMed  CAS  Google Scholar 

  • Mjellem N, Lund A, Hole K (1993) Reduction of NMDA-induced behaviour after acute and chronic administration of desipramine in mice. Neuropharmacology 32 (6): 591–595

    Article  PubMed  CAS  Google Scholar 

  • Mogilnicka E, Czyrak A, Maj J (1987) Dihydropyridine calcium channel antagonists reduce immobility in the mouse behavioral despair teat; antidepressants facilitate nifedipine action. Eur J Pharmacol 138: 413–416

    Article  PubMed  CAS  Google Scholar 

  • Mogilnicka E, Czyrak A, Maj J (1988) BAY K 8644 enhances immobility in the mouse behavioral despair test, an effect blocked by nifedipine. Eur JPharmacol 151: 307–311

    Article  CAS  Google Scholar 

  • Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Mongeau R, Weiss M, de Montigny C, Blier P (1998) Effect of acute, short-and long-term milnacipran administration on rat locus coeruleus noradrenergic and dorsal raphe serotonergic neurons. Neuropharmacology 37 (7): 905–918

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Gancayco CD, Winn MJ, Marchase RB, Friedlander MJ (1994) Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science 263 (5149): 973–977

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, McMahon A, Sabban EL, Tallman JF, Duman RS (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci 87: 7522–7526

    Article  PubMed  CAS  Google Scholar 

  • Nowak G, Legutko B, Skolnick P, Popik P (1998) Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors. Eur J Pharmacol 342 (2–3): 367–370

    Article  CAS  Google Scholar 

  • Nowak G, Ordway GA, Paul IA (1995a) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675: 157–164

    Article  CAS  Google Scholar 

  • Nowak G, Redmond A, McNamara M, Paul IA (1995b) Swim stress increases the potency of glycine at the N-methyl-D-aspartate receptor complex. J Neurochem 64 (2): 925–927

    Article  CAS  Google Scholar 

  • Nowak G, Trullas R, Layer RT, Skolnick P, Paul IA (1993) Adaptive changes in the N-methylD-aspartate receptor complex after chronic treatment with imipramine and l-aminocyclopropanecarboxylic acid. JPharmacol Exp Ther 265 (3): 1380–1386

    CAS  Google Scholar 

  • Okada F, Tokumitsu Y, Ui M (1986) Desensitization of beta-adrenergic receptor-coupled adenylate cyclase in cerebral cortex after in vivo treatment of rats with desipramine. JNeurochem 47 (2): 454–459

    Article  CAS  Google Scholar 

  • Ordway GA (1997) Pathophysiology of the locus coeruleus in suicide. Ann N YAcad Sci 836: 233–252

    Article  CAS  Google Scholar 

  • Ordway GA, Stockmeier CA, Cason GW, Klimek V (1997) Pharmacology and distribution of norepinephrine transporters in the human locus coeruleus and raphe nuclei. J Neurosci 17 (5): 1710–1719

    PubMed  CAS  Google Scholar 

  • Ortolano GA, Swonger AK, Kaiser EA, Hammond RP (1983) A calcium hypothesis of antidepressant action. Med Hypoth 10: 207–221

    Article  CAS  Google Scholar 

  • Ossowska G, Klenk-Majewska B, Szymczyk G (1997) The effect of NMDA antagonists on footshock-induced fighting behavior in chronically stressed rats. J Physiol Pharmacol 48 (1): 127–135

    PubMed  CAS  Google Scholar 

  • Oswald I, Brezinova V, Dunleavy DLF (1972) On the slowness of action of tricyclic antidepressant drugs. Br J Psychiat 120: 673–677

    Article  CAS  Google Scholar 

  • Papp M, Klimek V, Willner P (1994) Effects of imipramine on serotonergic and beta-adrenergic receptor binding in a realistic animal model of depression. Psychopharmacology (Berl) 114 (2): 309–314

    Article  CAS  Google Scholar 

  • Papp M, Moryl E (1994) Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 263 (1–2): 1–7

    Article  PubMed  CAS  Google Scholar 

  • Paul IA (1997) NMDA receptors and affective disorders. In: Antidepressants: new pharmacological strategies, Skolnick P (ed), Humana Press, Totowa, NJ, 145–158

    Google Scholar 

  • Paul IA, Layer RT, Skolnick P, Nowak G (1993) Adaptation of the NMDA receptor in rat cortex following chronic electroconvulsive shock or imipramine. Eur J Pharmacol 247(3): 305–311

    CAS  Google Scholar 

  • Paul IA, Nowak G, Layer RT, Popik P, Skolnick P (1994) Adaptation of the N-methyl-Daspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 269 (1): 95–102

    PubMed  CAS  Google Scholar 

  • Paul IA, Trullas R, Skolnick P, Nowak G (1992) Down-regulation of cortical beta-adrenoceptors by chronic treatment with functional NMDA antagonists. Psychopharmacology (Berl) 106: 285–287

    Article  CAS  Google Scholar 

  • Pilc A, Legutko B (1995a) Antidepressant treatment influences cyclic AMP accumulation induced by excitatory amino acids in rat brain. Pol JPharmacol 47 (4): 359–361

    CAS  Google Scholar 

  • Pilc A, Legutko B (1995b) The influence of prolonged antidepressant treatment on the changes in cyclic AMP accumulation induced by excitatory amino acids in rat cerebral cortical slices. Neuroreport 7 (1): 85–88

    CAS  Google Scholar 

  • Prikhozhan AV, Kovalev GI, Raevskii KS (1990) [Effects of antidepressive agents on glutamatergic autoregulatory presynaptic mechanism in the rat cerebral cortex]. Biull Eksp Biol Med 110 (12): 624–626

    PubMed  CAS  Google Scholar 

  • Przegalinski E, Tatarczynska E, Deren-Wesolek A, Chojnacka-Wojcik E (1997) Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 36 (1): 31–37

    Article  PubMed  CAS  Google Scholar 

  • Pucilowski O (1997) Calcium channel antagonists in mood disorders. In: Antidepressants: new pharmacological strategies, Skolnick P (ed), Humana Press, Totowa, NJ, 81–102

    Chapter  Google Scholar 

  • Reynolds IJ, Miller RJ (1988) Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc. Br J Pharmacol 95 (1): 95–102

    CAS  Google Scholar 

  • Rosin DL, Melia K, Knorr AM, Nestler EJ, Roth RH, Duman RS (1995) Chronic imipramine administration alters the activity and phosphorylation state of tyrosine hydroxylase in dopaminergic regions of rat brain. Neuropsychopharmacology 12 (2): 113–121

    Article  PubMed  CAS  Google Scholar 

  • Rossby SP, Sulser F (1997) Antidepressants: Beyond the synapse. In: Antidepressants: new pharmacological stratagies, Skolnick P (ed), Humana Press, Totowa, NJ, 195–212

    Google Scholar 

  • Schildkraut JJ, Schanberg SM, Breese GR, Kopin IJ (1967) Norepinephrine metabolism and drugs used in the affective disorders: A possible mechanism of action. Am J Psychiatry 124: 600–608

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ, Winokur A, Draskoczy PR, Hensle JH (1971) Changes in norepinephrine turnover in rat brain during chronic administration of imipramine and protriptyline: A possible explanation for the delay in onset of clinical antidepressant effects. Am J Psychiatry 127: 1032–1039

    PubMed  CAS  Google Scholar 

  • Shors T, Seib T, Levine S, Thompson R (1989) Inescapable versus escapable shock modulates long-term potentiation in the rat. Science 244: 224–226

    Article  PubMed  CAS  Google Scholar 

  • Sills MA, Loo PS (1988) Tricyclic antidepressants and dextromethorphan bind with higher affinity to the phencyclidine receptor in the absence of magnesium and L-glutamate. Mol Pharmacol 36: 160–165

    Google Scholar 

  • Silva MT, Rose S, Hindmarsh JG, Aislaitner G, Gorrod JW, Moore PK, Jenner P, Marsden CD (1995) Increased striatal dopamine efflux in vivo following inhibition of cerebral nitric oxide synthase by the novel monosodium salt of 7-nitro indazole. Br J Pharmacol 114 (2): 257–258

    Article  PubMed  CAS  Google Scholar 

  • Sinei KA, Redfern PH (1993) The effects of chronic clomipramine and mianserin on the activity of tryptophan hydroxylase in the rat brain. EastAfr Med J 70 (11): 721–724

    CAS  Google Scholar 

  • Skolnick P (1999) Antidepressant for the new millennium. Eur JPharmacol 375: 31–40

    Article  CAS  Google Scholar 

  • Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R (1996) Adaptation of N-methyl-Daspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29 (1): 23–26

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P, Miller R, Young A, Boje K, Trullas R (1992) Chronic treatment with 1-aminocyclopropanecarboxylic acid desensitizes behavioral responses to compounds acting at the N-methyl-D-aspartate receptor complex. Psychopharmacology (Berl) 107 (4): 489–496

    Article  CAS  Google Scholar 

  • Southam E, Garthwaite J (1993) The Nitric Oxide-Cyclic GMP Signalling Pathway in Rat Brain. Neuropharmacology 32: 1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Stahl SM (1998) Basic psychopharmacology of antidepressants, part 1: Antidepressants have seven distinct mechanisms of action. J Clin Psychiatry 59 Suppl 4: 5–14

    Article  PubMed  CAS  Google Scholar 

  • Stone EA (1983) Problems with the current catechholamine hypothesis of antidepressant agents: speculations leading to a new hypothesis. Behav Brain Sci 6: 555–577

    Google Scholar 

  • Strasser A, McCarron RM, Ishii H, Stanimirovic D, Spatz M (1994) L-arginine induces dopamine release from the striatum in vivo. Neuroreport 5 (17): 2298–2300

    Article  PubMed  CAS  Google Scholar 

  • Sugrue MF (1985) Delayed biochemical changes following antidepressant treatment. Psychopharmacol Bull 21: 619–622

    PubMed  CAS  Google Scholar 

  • Trullas R (1997) Functional NMDA antagonists: A new class of antidepressant agents. In: Antidepressants: new pharmacological strategies, Skolnick P (ed), Humana Press, Totowa, NJ, 103–124

    Google Scholar 

  • Trullas R, Folio T, Young A, Miller R, Boje K, Skolnick P (1991) 1-aminocyclopropanecarboxylates exhibit antidepressant and anxiolytic actions in animal models. Eur J Pharmacol 203 (3): 379–385

    Article  PubMed  CAS  Google Scholar 

  • Trullas R, Jackson B, Skolnick P (1989) 1-aminocyclopropanecarboxylic acid, a ligand of the strychnine-insensitive glycine receptor. Pharmacol Biochem Behav 34: 313–316

    Article  PubMed  CAS  Google Scholar 

  • Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Trulson ME, Arasteh K, Ray DW (1986) Effects of elevated calcium on learned helplessness and brain serotonin. Pharmacol Biochem Behav 24: 445–448

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J (1991) The development of our understanding of the mechanism of action of antidepressant drugs. Pol JPharmacol Pharm 43 (4): 323–338

    CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Sulser F (1976) Adaptive mechanisms of the noradrenergic cyclic AMP generating system in the limbic forebrain of the rat: adaptation to persistent changes in the availability of norepinephrine (NE). JNeurochem 27 (3): 661–666

    Article  CAS  Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257 (5526): 495–496

    Article  PubMed  CAS  Google Scholar 

  • Watkins CJ, Pei Q, Newberry NR (1998) Differential effects of electroconvulsive shock on the glutamate receptor mRNAs for NR2A, NR2B and mGluR5b [In Process Citation]. Brain Res Mol Brain Res 61 (1–2): 108–113

    Article  PubMed  CAS  Google Scholar 

  • Wedzony K, Klimek V, Nowak G (1995) Rapid down-regulation of beta-adrenergic receptors evoked by combined forced swimming test and CGP 37849 - a competitive antagonist of NMDA receptors. Pol JPharmacol 47 (6): 537–540

    CAS  Google Scholar 

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207: 446–457

    PubMed  CAS  Google Scholar 

  • Yu PH, Boulton AA (1990) Effect of trimipramine, an atypical tricyclic antidepressant, on the activities of various enzymes involved in the metabolism of biogenic amines. Prog Neuropsychopharmacol Biol Psychiatry 14 (3): 409–416

    Article  PubMed  CAS  Google Scholar 

  • Zhu MY, Blakely RD, Apparsundaram S, Ordway GA (1998) Down-regulation of the human norepinephrine transporter in intact 293- hNET cells exposed to desipramine. J Neurochem 70 (4): 1547–1555

    Article  PubMed  CAS  Google Scholar 

  • Zhu MY, Ordway GA (1997) Down-regulation of norepinephrine transporters on PC 12 cells by transporter inhibitors. JNeurochem 68 (1): 134–141

    Article  CAS  Google Scholar 

  • Zhu XZ, Luo LG (1992) Effect of nitroprusside (nitric oxide) on endogenous dopamine release from rat striatal slices. J Neurochem 59 (3): 932–935

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Paul, I.A. (2001). Calcium signaling cascades, antidepressants and major depressive disorders. In: Leonard, B.E. (eds) Antidepressants. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8344-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8344-3_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9526-2

  • Online ISBN: 978-3-0348-8344-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics