Skip to main content

Abstract

Debra Martin was visiting the Calcified Tissue Laboratory at Henry Ford Hospital in Detroit, Michigan, learning to make thin sections of undecalcifiedtarchaeological bone. The objective of her visit was to make slides of bone thin enough to allow the light from the microscope to be transmitted through them. Although modern equipment speeds up the process, Martin, at the time a graduate student at the University of Massachusetts, was using a manual method for grinding the bone to the desired 100-micron thickness. The femoral cross-section is removed from an area just below the lesser trochanter (a few inches below its neck).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strouhal E (1977) The physical anthropology of the Meroitic area. Third International Meroitic Conference, Toronto, Canada, 1977

    Google Scholar 

  2. Adams WY (1967) Continuity and change in Nubian culture history. Sudan Notes and Records 48: 1–32

    Google Scholar 

  3. Adams WY (1977)Nubia: Corridor to Africa.Princeton: Princeton University Press

    Google Scholar 

  4. Bassett EJ, Keith MS, Armelagos GJ, Martin DL, VillanuevaA (1980) Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350).Science209: 1532–1534

    Article  PubMed  CAS  Google Scholar 

  5. Hummert JR, VanGerven DP (1982) Tetracycline-labeled human bone from a medieval population in Nubia’s Batn el Hajar (550–1450 A. D.).Hum Biol54: 355–371

    PubMed  CAS  Google Scholar 

  6. Keith M, Armelagos GJ (1981) Naturally occurring dietary antibiotics and human health. In: L Romannuci-Ross, D Moerman, RR Tancreddi (eds):The Anthropology of Medicine 1st ed. Preager Press, New York

    Google Scholar 

  7. Keith M, Armelagos GJ (1983) Naturally occurring dietary antibiotics and human health. In: L Romannuci-Ross, D Moerman, RR Trancreddi (eds):The Anthropology of Medicine.Preager Press, New York

    Google Scholar 

  8. Ortner DJ, Putschar WGJ (1981)Identification of Pathological Conditions in Human Skeletal RemainsVol 28. Smithsonian Institution Press, Washington D.C.

    Google Scholar 

  9. Cook M, Molto EL, Anderson C (1989) Fluorochrome labelling in Roman Period skeletons from Dakhleh Oaisis, Egypt.Amer J Phys Anthropol80: 137–143

    Article  CAS  Google Scholar 

  10. Keith M, Armelagos GJ (1988) An example ofin vivotetracycline labelling: reply to Piepenbrink.J Archaeol Sci15: 595–601

    Article  Google Scholar 

  11. Cook JA (1998) Tetracycline labeling in an ancient Nubian X-Group (24-I-3) population. Senior Honors, Emory University

    Google Scholar 

  12. Piepenbrink H (1986) Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation.J Archaeol Sci13: 417–430

    Article  Google Scholar 

  13. Piepenbrink H, Herrmann B, Hoffmann P (1981) Tetracyclintypische Fluoreszenzen an bodengelagerten Skeletteilen.Z Rechtsmedizin91: 71–74

    Article  Google Scholar 

  14. Hackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bone.Med Sci Law21: 243–265

    PubMed  CAS  Google Scholar 

  15. Marchiafava V, Bonnucci E, Ascenzi A (1974) Fungal osteoclasia: a model of dead bone resorption.Calcified Tiss Res14: 195–210

    Article  CAS  Google Scholar 

  16. Martin D (1983)Paleophysiological Aspects of Bone Remodeling in Meroitic X-Group and Christian Populations from Sudanese Nubia. Doctoral Dissertation, University of Massachusetts, Amherst

    Google Scholar 

  17. Ascenzi A (1963) Microscopy and prehistoric bone. In: DR Brothwell, E Higgs (eds):Science in Archaeology.Thames and Hudson, London, 526–538

    Google Scholar 

  18. Baker BJ (1992)Collagen Composition in human Skeletal Remains from the NAX Cemetery (A.D. 350–550) in Lower Nubia.Doctoral Dissertation, University of Massachusetts, Amherst

    Google Scholar 

  19. Urist MR, Ibsen KH (1963) Chemical reactivity of mineralized tissues with oxytetracycline.Arch Pathol 75:484–496

    Google Scholar 

  20. Waksman SA (1967)The Actinomycetes: A Summary of Current Knowledge.The Ronald Press Company, New York

    Google Scholar 

  21. Alexander M (1977)Introduction to Soil Microbiology.John Wiley and Sons, New York

    Google Scholar 

  22. Williams ST (1982) Are antibiotics produced in soil?Pedobiologia23: 427–435

    CAS  Google Scholar 

  23. Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition ofPythium ultimumin the cotton spermosphere and rhizosphere byPseudomonas fluorescens. Mol Plant Microbe Interact4: 393–399

    Article  CAS  Google Scholar 

  24. Darby WJ, Ghalioungui P, Grivetti L (1977)Food: The Gift of Osiris.2 vols. Academic Press, London

    Google Scholar 

  25. Culwick GM (1951) Diet in the Gezira Irrigated Area, Sudan. Khartoum: Sudan Survey Department, No. 304

    Google Scholar 

  26. Cummings LS (1983)Coprolites from Medieval Christian Nubia: An Interpretation of Diet and Nutritional Stress.Doctoral Dissertation, University of Colorado

    Google Scholar 

  27. Kemp BJ (1989)Ancient Egypt: Anatomy of a Civilization.Routledge, London

    Google Scholar 

  28. Mills J (1992) Beyond nutrition: Antibiotics produced through grain storage practices, their recognition and implication for the Egyptian Predynastic. In:R Friedman, B Adams (eds):The Followers of Horus: Studies Dedicated to Michael Allen Hoffman,(1944–1990).Egyptian Studies Association Publication No. 2, Oxbow Monograph 20, 28–35

    Google Scholar 

  29. Frost HM, Villanueva A, Roth H, Stanisavlevic S (1961) Experimental multiband tetracycline measurements of lamellar osteoblastic activity.Henry Ford Hospital Med Bull9: 312–329

    CAS  Google Scholar 

  30. Frost HM, Villanueva A, Roth H, Stanisavlevic S (1961) Tetracycline bone labelling.New Drugs1: 206–211

    CAS  Google Scholar 

  31. Milch R, Koll DP, Tobie JE (1958) Fluorescence of tetracycline antibiotics in bone.J Bone Joint Surg40A: 897–909

    CAS  Google Scholar 

  32. Oklund SA, Prolo DJ, Guittierrez RV (1981) The significance of yellow bone: Evidence for tetracycline in adult human bone.JAMA246: 761–763

    Article  PubMed  CAS  Google Scholar 

  33. Cohlan SQ, Bevelander G, Tiamsic T (1963) Growth inhibition of prematures receiving tetracycline: A clinical and laboratory investigation of tetracycline-induced bone fluorescence.Amer J Dis Child20: 275–290

    Google Scholar 

  34. Demers P, Fraser D, Goldbloom RB, Haworth JC, LaRochelle J, McLean R, Murray TK (1968) Effects of tetracycline on skeletal growth and dentition.Can Med Assn J99: 849–854

    CAS  Google Scholar 

  35. Timmermans L (1974) Influence of antibiotics on spermatogenesis.J Urol112: 348–349

    PubMed  CAS  Google Scholar 

  36. Grauer A, Armelagos GJ (1998) Skeletal Biology of Hesban: a biocultural interpretation. In: SD Waterhouse (ed.):The Necropolis of Hesban: A Typology of Tombs. Hesban 10.Andrews University Press, Benin Springs, 107–131

    Google Scholar 

  37. Von Deines H, Grapow H (1959)Wörterbuch der Aegyptischen DrogennamenVol 6. AkadenieVerlag, Berlin

    Google Scholar 

  38. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms.Adv Dent Res12: 12–26

    Article  PubMed  CAS  Google Scholar 

  39. Golub LM, McNamara TF, D’Angelo G, Greenwald RA, Ramamurthy NS (1987) A non-antibacterial chemically-modified tetracycline inhibits mammalian collagenase activity.J Dent Res66: 1310–1314

    Article  PubMed  CAS  Google Scholar 

  40. Greenwald RA, Golub LM, Lavietes B, Ramamurthy NS, Gruber B, Laskin RS, McNamara TF (1987) Tetracyclines inhibit human synovial collagenasein vivoandin vitro. J Rheumatol14: 28–32

    CAS  Google Scholar 

  41. Ramamurthy N, Leung BM, Moak S, Greenwald R, Golub L (1993) CMT/NSAID combination increases bone CMT uptake and inhibit bone resorption.Ann NYAcad Sci696: 420–421

    Article  CAS  Google Scholar 

  42. Yu Z, Ramamurthy NS, Leung M, Chang KM, McNamara TF, Golub LM (1993) Chemically-modified tetracycline normalizes collagen metabolism in diabetic rats: a dose-response study.J Periodont Res28: 420–428

    PubMed  CAS  Google Scholar 

  43. de Bri E, Lei W, Svensson O, Chowdhury M, Moak SA, Greenwald RA (1998) Effect of an inhibitor of matrix metalloproteinases on spontaneous osteoarthritis in guinea pigs.Adv Dent Res12: 82–85

    Article  PubMed  Google Scholar 

  44. Golub L, Greenwald R, Ramamurthy N, Zucker S, Ramsammy L, McNamara T (1992) Tetracyclines (TCs) inhibit matrix metalloproteinases (MMPs):in vivoeffects in arthritic and diabetic rats and newin vitrostudies.Matrix Suppl1: 315–316

    PubMed  CAS  Google Scholar 

  45. Greenwald RA (1994) Treatment of destructive arthritic disorders with MMP inhibitors. Potential role of tetracyclines.Ann NYAcad Sci732: 181–198

    Article  CAS  Google Scholar 

  46. Golub LM, Lee HM, Greenwald RA, Ryan ME, Sorsa T, Salo T, Giannobile WV (1997) A matrix metalloproteinase inhibitor reduces bone-type collagen degradation fragments and specific collagenases in gingival crevicular fluid during adult periodontitis.Inflamm Res46: 310–319

    Article  PubMed  CAS  Google Scholar 

  47. Greenwald RA, Golub LM, Ramamurthy NS, Chowdhury M, Moak SA, Sorsa T (1998) In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone22: 33–38

    Article  PubMed  Google Scholar 

  48. Myers SA, Wolowacz RG (1998) Tetracycline-based MMP inhibitors can prevent fibroblast-mediated collagen gel contractionin vitro. Adv Dent Res12: 86–93

    Article  CAS  Google Scholar 

  49. Ramamurthy NS, Schroeder KL, McNamara TF, Gwinnett AJ, Evans RT, Bosko C, Golub LM (1998) Root-surface caries in rats and humans: inhibition by a non-antimicrobial property of tetracyclines.Adv Dent Res12: 43–50

    Article  PubMed  CAS  Google Scholar 

  50. Ryan ME, Ramamurthy S, Golub LM (1996) Matrix metalloproteinases and their inhibition in periodontal treatment.Curr Opin Periodontol3: 85–96

    PubMed  CAS  Google Scholar 

  51. Suomalainen K, Halmen S, Ingman T, Lindy O, Saari H, Konttinen YT, Golub LM, Sorsa T (1992) Tetracycline inhibition identifies the cellular sources of collagenase in gingival crevicular fluid in different forms of periodontal diseases.Drug Exp Clin Res18: 99–104

    CAS  Google Scholar 

  52. Lauhio A, Salo T, Tjaderhane L, Landevirta J, Golub LM, Sorsa T (1995) Tetracyclines in treatment of rheumatoid arthritis.Lancet346: 645–646

    Article  PubMed  CAS  Google Scholar 

  53. Nordstrom D, Lindy O, Lauhio A, Sorsa T, Santavirta S, Konttinen YT (1998) Anti-collagenolytic mechanism of action of doxycycline treatment in rheumatoid arthritis.Rheumatol Int17: 175–180

    Article  PubMed  CAS  Google Scholar 

  54. Golub LM, Ramamurthy N, McNamara TF, Gomes B, Wolff M, Casino A, Kapoor A, Zambon J, Ciancio S, Schneir M (1984) Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease.J Periodont Res19: 651–655

    Article  PubMed  CAS  Google Scholar 

  55. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863–868

    Article  PubMed  CAS  Google Scholar 

  56. Armelagos GJ, Mielke JH, Owen KH, VanGerven DP, Dewey JR, Mahler PE (1972) Bone growth and development in prehistoric populations from Sudanese Nubia.J Hum Evol 1:89–119

    Article  Google Scholar 

  57. Arnold JS (1960) Quantification of mineralization of bone as an organ and tissue in osteoporosis.Clint Orthopaed49: 167–175

    Google Scholar 

  58. Arnold JS, Bartley MH, Tont SA, Jenkins DP (1965) Skeletal changes in aging and disease.Clint Orthopaed49: 17–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Armelagos, G.J., Kolbacher, K., Collins, K., Cook, J., Krafeld-Daugherty, M. (2001). Tetracycline consumption in prehistory. In: Nelson, M., Hillen, W., Greenwald, R.A. (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8306-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8306-1_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9511-8

  • Online ISBN: 978-3-0348-8306-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics