Skip to main content
  • 358 Accesses

Abstract

The tetracyclines (Fig. 1) are secondary metabolites produced by Gram-positive bacteria from the generaStreptomycesorNocardia.They act as antibiotics and inhibit protein biosynthesis by interfering with binding of the aminoacyltRNA-EF-Tu-GTP ternary complex to the ribosomal A-site [1].

Gram-positive bacteria, cell wall free mycoplasmas, rickettsiae, chlamydiae and protozoan parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981)The molecular basis of antibiotic action.Wiley, London

    Google Scholar 

  2. Kaji A, Ryoji M (1979) Tetracycline. In:FE Hahn (ed.):Antibiotics.Springer, Berlin, 304–328

    Google Scholar 

  3. Chopra I (1994) Tetracycline analogs whose primary target is not the bacterial ribosome.Antimicrob Agents Chemother38: 637–640

    Article  PubMed  CAS  Google Scholar 

  4. Spahn CM, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus.J Malec Med74: 423–439

    Article  CAS  Google Scholar 

  5. Hostalek Z, Vanek Z (1985) Biosynthesis of the tetracyclines. In: JJ Hlavka, JH Booth (eds):The Tetracyclines.Springer, Berlin, 137–178

    Chapter  Google Scholar 

  6. Clive DLJ (1968) Chemistry of tetracyclines.Quart Rev Chem Soc22: 435–456

    Article  CAS  Google Scholar 

  7. Mitscher LA (1978)The chemistry of tetracycline antibiotics.Marcel Dekker, New York

    Google Scholar 

  8. Rogalski W (1985) Chemical modification of the tetracyclines. In: JJ Hlavka, JH Booth (eds):The Tetracyclines.Springer, Berlin, 179–316

    Chapter  Google Scholar 

  9. Sum PE, Sum FW, Projan SJ (1998) Recent developments in tetracycline antibiotics.Curr Pharmaceut Design4: 119–132

    CAS  Google Scholar 

  10. Dürkheimer W (1975) Tetracycline: Chemie, Biochemie and Struktur-Wirkungs-Beziehungen.Angew Chem87: 751–784

    Article  Google Scholar 

  11. Blackwood RK, English AR (1977) Structure-activity relationships in the tetracycline series. In:D Perlman (ed.):Structure-activity relationships among the semisynthetic antibiotics.Academic Press, New York, 397–426

    Google Scholar 

  12. Nikaido H, Thanassi DG (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples.Antimicrob Agents Chemother37: 1393–1399

    Article  PubMed  CAS  Google Scholar 

  13. Chopra I (1995) Tetracycline uptake and efflux in bacteria. In:NH Georgopapadakou (ed.):Drug transport in antimicrobial and anticancer chemotherapy.Marcel Dekker, New York, 221–243

    Google Scholar 

  14. Salyers AA, Speer BS, Shoemaker NB (1990) New perspectives in tetracycline resistance.Mol Microbiol4: 151–156

    Article  PubMed  CAS  Google Scholar 

  15. Johnson R, Adams J (1992) The ecology and evolution of tetracycline resistance.Trends Ecol Evol7: 295–299

    Article  PubMed  CAS  Google Scholar 

  16. Speer BS, Shoemaker NB, Salyers AA (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance.Clin Microbiol Rev5: 387–399

    PubMed  CAS  Google Scholar 

  17. Hillen W, Berens C (1994) Mechanisms underlying expression of TnJO encoded tetracycline resistance.Annu Rev Microbiol48: 345–369

    Article  PubMed  CAS  Google Scholar 

  18. Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution.FEMS Microbiol Rev19: 1–24

    Article  PubMed  CAS  Google Scholar 

  19. Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms.Arch Microbial165: 359–369

    Article  CAS  Google Scholar 

  20. Taylor DE, Chau A (1996) Tetracycline resistance mediated by ribosomal protection.Antimicrob Agents Chemother40: 1–5

    PubMed  CAS  Google Scholar 

  21. White JP, Cantor CR (1971) Role of magnesium in the binding of tetracycline toEscherichia coliribosomes.J Mol Biol58: 397–400

    Article  PubMed  CAS  Google Scholar 

  22. Smythies JR, Benington F, Morin RD (1972) On the molecular mechanism of action of the tetracyclines.Experientia28: 1253–1254

    Article  PubMed  CAS  Google Scholar 

  23. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence ofTetrahymena. Cell31: 147–157

    Article  CAS  Google Scholar 

  24. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme.Cell35: 849–857

    Article  PubMed  CAS  Google Scholar 

  25. Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions.Annu Rev Biochem64: 763–797

    Article  PubMed  CAS  Google Scholar 

  26. Cundliffe E (1990) Recognition sites for antibiotics within rRNA. In: WE Hill, A Dahlberg, RA Garrett, PB Moore, D Schlessinger, JR Warner (eds):The Ribosome.ASM Press, Washington, 479–490

    Google Scholar 

  27. Wallis MG, Schroeder R (1997) The binding of antibiotics to RNA.Prog Biophys Mol Biol67: 141–154

    Article  PubMed  CAS  Google Scholar 

  28. von Ahsen U, Schroeder R (1990) Streptomycin and self-splicing.Nature346: 801

    Article  Google Scholar 

  29. Gesteland RF, Atkins JF (eds) (1993)The RNA World.Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  30. Gesteland RF, Cech TR, Atkins JF (eds) (1999)The RNA World2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  31. Rasmussen B, Noller HF, Daubresse G, Oliva B, Misulovin Z, Rothstein DM, Ellestad GA, Gluzman Y, Tally FP, Chopra I (1991) Molecular basis of tetracycline action: identification of analogs whose primary target is not the bacterial ribosome.Antimicrob Agents Chemother35: 2306–2311

    Article  PubMed  CAS  Google Scholar 

  32. Lindley EV, Munske GR, Magnuson JA (1984) Kinetic analysis of tetracycline accumulation byStreptococcus faecalis. J Bacteriol158: 334–336

    CAS  Google Scholar 

  33. Yamaguchi A, Ohmori H, Kaneko-Ohdera M, Nomura T, Sawai T (1991) 4pH-dependent accumulation of tetracycline inEscherichia coli. Antimicrob Agents Chemother35: 53–56

    Article  PubMed  CAS  Google Scholar 

  34. Scholtan W (1968) Die hydrophobe Bindung der Pharmaka an Humanalbumin and Ribonukleinsäure.Arzneim Forsch-Drug Res18: 505–517

    CAS  Google Scholar 

  35. Connamacher RH, Mandel HG (1965) Binding of tetracyclines to the 30S subunit and poly-uridilic acid.Biochem Biophys Res Commun20: 98–103

    Article  PubMed  CAS  Google Scholar 

  36. Day LE (1966) Tetracycline inhibition of cell-free protein synthesis. I. Binding of tetracycline to components of the system.J Bacteriol91: 1917–1923

    PubMed  CAS  Google Scholar 

  37. Day LE (1966) Tetracycline inhibition of cell-free protein synthesis. II. Effect of the binding of tetracycline to the components of the system.J Bacteriol92: 197–203

    PubMed  CAS  Google Scholar 

  38. Attur MG, Patel RN, Patel PD, Abramson SB, Amin AR (1999) Tetracycline up-regulates COX-2 expression and prostaglandin E2 production independent of its effect on nitric oxide.J Immunol162: 3160–3167

    PubMed  CAS  Google Scholar 

  39. Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, Patel IR, Abramson SB (1996) A novel mechanism of action of tetracyclines: effects on nitric oxide synthases.Proc Natl Acad Sci USA93: 14 014–14 019

    Article  CAS  Google Scholar 

  40. Beekman B, Verzijl N, de Roos JA, Koopman JL, TeKoppele JM (1997) Doxycycline inhibits collagen synthesis by bovine chondrocytes cultured in alginate.Biochem Biophys Res Commun237: 107–110

    Article  PubMed  CAS  Google Scholar 

  41. Hanemaaijer R, Sorsa T, Konttinen YT, Ding Y, Sutinen M, Visser H, van Hinsbergh VW, Helaakoski T, Kainulainen T, Ronka H et al (1997) Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline.J Biol Chem272: 31504–31509

    Article  PubMed  CAS  Google Scholar 

  42. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a trans-genic mouse model of Huntington disease.Nat Med6: 797–801

    Article  PubMed  CAS  Google Scholar 

  43. Fey G, Reiss M, Kersten H (1973) Interaction of tetracylines with ribosomal subunits fromEscherichia coli.A fluorometric investigation.Biochemistry12: 1160–1164

    Article  PubMed  CAS  Google Scholar 

  44. Strel’tsov SA, Kukhanova MK, Krayevsky AA, Beljayskaja IV, Victorova LS, Gursky GV, Treboganov AD, Gottikh BP (1974) Binding of oxytetracycline toE. coliribosomes.Mol Biol Rep 1:391–396

    Article  Google Scholar 

  45. Strel’tsov SA, Kukhanova MK, Gurskii GV, Kraevskii AA, Beliayskaia IV (1975) Oxytetracycline binding toE. coliribosomes.Mol Biol Mosk9: 910–921

    PubMed  Google Scholar 

  46. Tritton TR (1977) Ribosome-tetracycline interactions.Biochemistry16: 4133–4138

    Article  PubMed  CAS  Google Scholar 

  47. Epe B, Woolley P (1984) The binding of 6-demethylchlortetracycline to 70S, 50S and 30S ribosomal particles: a quantitative study by fluorescence anisotropy.EMBO J3: 121–126

    PubMed  CAS  Google Scholar 

  48. Bergeron J, Ammirati M, Danley D, James L, Norcia M, Retsema J, Strick CA, Su WG, Sutcliffe J, Wondrack L (1996) Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(0)-mediated ribosomal protection.Antimicrob Agents Chemother40: 2226–2228

    PubMed  CAS  Google Scholar 

  49. Goldman RA, Hasan T, Hall CC, Strycharz WA, Cooperman BS (1983) Photoincorporation of tetracycline intoEscherichia coilribosomes. Identification of the major proteins photolabeled by native tetracycline and tetracycline photoproducts and implications for the inhibitory action of tetracycline on protein synthesis.Biochemistry22: 359–368

    Article  PubMed  CAS  Google Scholar 

  50. Buck MA, Cooperman BS (1990) Single protein omission reconstitution studies of tetracycline binding to the 30S subunit ofEscherichia couribosomes.Biochemistry29: 5374–5379

    Article  PubMed  CAS  Google Scholar 

  51. Powers T, Noller HF (1995) Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA.RNA1: 194–209

    PubMed  CAS  Google Scholar 

  52. Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures.Science256: 1416–1419

    Article  PubMed  CAS  Google Scholar 

  53. Khaitovich P, Mankin AS, Green R, Lancaster L, Noller HF (1999) Characterization of functionally active subribosomal particles fromThermus aquaticus. Proc Nat! Acad Sci USA96: 85–90

    Article  CAS  Google Scholar 

  54. Zhang B, Cech TR (1998) Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features.Chem Biol5: 539–553

    Article  PubMed  CAS  Google Scholar 

  55. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAs in solution.Nucl Acid Res15: 9109–9128

    Article  CAS  Google Scholar 

  56. Stern S, Moazed D, Noller HF (1988) Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension.Methods Enzymol164: 481–489

    Article  PubMed  CAS  Google Scholar 

  57. Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA.Nature327: 389–394

    Article  PubMed  CAS  Google Scholar 

  58. Clemons WM Jr, May JL, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V (1999) Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution.Nature400: 833–840

    Article  PubMed  CAS  Google Scholar 

  59. Tocilj A, Schlunzen F, Janell D, Gluhmann M, Hansen HA, Harms J, Bashan A, Bartels H, A mon I, Franceschi F et al (1999) The small ribosomal subunit fromThermus thermophilusat 4.5 A resolution: pattern fittings and the identification of a functional site.Proc Nat! Acad Sci USA96: 14252–14257

    Article  PubMed  CAS  Google Scholar 

  60. Steiner G, Kuechler E, Barta A (1988) Photo-affinity labelling at the peptidyl transferase centre reveals two different positions for the A- and P-sites in domain V of 23S rRNA.EMBO J7: 3949–3955

    PubMed  CAS  Google Scholar 

  61. Oehler R, Polacek N, Steiner G, Barta A (1997) Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA ofEscherichia cols. Nucl Acid Res25: 1219–1224

    Article  CAS  Google Scholar 

  62. Wilms C, Noah JW, Zhong D, Wollenzien P (1997) Exact determination of UV-induced crosslinks in 16S ribosomal RNA in 30S ribosomal subunits.RNA3: 602–612

    PubMed  CAS  Google Scholar 

  63. Noah JW, Dolan MA, Rabin P, Wollenzien P (1999) Effects of tetracycline and spectinomycin on the tertiary structure of ribosomal RNA in the Escherichia cols 30 S ribosomal subunit.J Biol Chem274: 16576–16581

    Article  PubMed  CAS  Google Scholar 

  64. Ross JI, Eady EA, Cove JH, Cunliffe WJ (1998) 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium.Antimicrob Agents Chemother42: 1702–1705

    PubMed  CAS  Google Scholar 

  65. Powers T, Noller HF (1991) A functional pseudoknot in 16S ribosomal RNA.EMBO J10: 2203–2214

    PubMed  CAS  Google Scholar 

  66. Recht MI, Douthwaite S, Dahlquist KD, Puglisi JD (1999) Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction.J Mol Biol286: 33–43

    Article  PubMed  CAS  Google Scholar 

  67. Fedor MJ (2000) Structure and function of the hairpin ribozyme.J Mol Biol297: 269–291

    Article  PubMed  CAS  Google Scholar 

  68. Frank DN, Pace NR (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme.Annu Rev Biochem67: 153–180

    Article  PubMed  CAS  Google Scholar 

  69. Cech TR (1990) Self-splicing of group I introns.Annu Rev Biochem59: 543–568

    Article  PubMed  CAS  Google Scholar 

  70. Saldanha R, Mohr G, Belfort M, Lambowitz AM (1993) Group I and group II introns.FASEB J7: 15–24

    PubMed  CAS  Google Scholar 

  71. Liu Y, Tidwell RR, Leibowitz MJ (1994) Inhibition ofin vitrosplicing of a group I intron ofPneumocystis carinii. J Eukaryot Microbiol41: 31–38

    Article  CAS  Google Scholar 

  72. Rogers J (1996)Antibiotic inhibition of catalytic RNA functions.Ph D thesis, University of Vancouver, British Columbia

    Google Scholar 

  73. Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis.J Mol Biol216: 585–610

    Article  PubMed  CAS  Google Scholar 

  74. Lehnert V, Jaeger L, Michel F, Westhof E (1996) New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of theTetrahymena thermophilaribozyme.Chem Biol3: 993–1009

    Article  PubMed  CAS  Google Scholar 

  75. Banerjee AR, Jaeger JA, Turner DH (1993) Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure.Biochemistry32: 153–163

    Article  PubMed  CAS  Google Scholar 

  76. Laggerbauer B, Murphy FL, Cech TR (1994) Two major tertiary folding transitions of theTetrahymenacatalytic RNA.EMBO J13: 2669–2676

    PubMed  CAS  Google Scholar 

  77. Michel F, Ferat J-L (1995) Structure and activities of group II introns.Annu Rev Biochem64: 435–461

    Article  PubMed  CAS  Google Scholar 

  78. Wank H (1992) Über die Wirkung von Antibiotika auf autokatalytische Intron-RNA. Diplomarbeit, Universität Wien

    Google Scholar 

  79. Hertweck M (1999) Inhibition of nuclear pre-mRNA splicing and group II intron splicing by antibioticsin vitro.Diplomarbeit, Universität Wien

    Google Scholar 

  80. Birikh KR, Heaton PA, Eckstein F (1997) The structure, function and application of the hammerhead ribozyme.Eur J Biochem245: 1–16

    Article  PubMed  CAS  Google Scholar 

  81. Symons RH (1997) Plant pathogenic RNAs and RNA catalysis.Nucl Acid Res25: 2683–2689

    Article  CAS  Google Scholar 

  82. Stage-Zimmermann TK, Uhlenbeck OC (1998) Hammerhead ribozyme kinetics.RNA4: 875–889

    Article  PubMed  CAS  Google Scholar 

  83. Murray JB, Arnold JR (1996) Antibiotic interactions with the hammerhead ribozyme:tetracyclines as a new class of hammerhead inhibitor.Biochem J317: 855–860

    PubMed  CAS  Google Scholar 

  84. Hermann T, Westhof E (1998) Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA.J Mol Biol276: 903–912

    Article  PubMed  CAS  Google Scholar 

  85. Lott WB, Pontius BW, von Hippel PH (1998) A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate.Proc Natl Acad Sci USA95: 542–547

    Article  PubMed  CAS  Google Scholar 

  86. Ferré-D’Amaré AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme.Nature395: 567–574

    Article  PubMed  Google Scholar 

  87. Been MD, Wickham GS (1997) Self-cleaving ribozymes of hepatitis delta virus RNA.Eur J Biochem247: 741–753

    Article  PubMed  CAS  Google Scholar 

  88. Rogers J, Chang AH, von Ahsen U, Schroeder R, Davies J (1996) Inhibition of the self-cleavage reaction of the human hepatitis delta virus ribozyme by antibiotics.J Mol Biol259: 916–925

    Article  CAS  Google Scholar 

  89. Saville BJ, Collins RA (1991) RNA-mediated ligation of self-cleavage products of aNeurosporamitochondrial plasmid transcript.Proc Natl Acad Sci USA88: 8826–8830

    Article  PubMed  CAS  Google Scholar 

  90. Beattie TL, Olive JE, Collins RA (1995) A secondary-structure model for the self-cleaving region ofNeurosporaVS RNA.Proc Natl Acad Sci USA92: 4686–4690

    Article  PubMed  CAS  Google Scholar 

  91. Olive JE, De Abreu DM, Rastogi T, Andersen AA, Mittermaier AK, Beattie TL, Collins RA (1995) Enhancement ofNeurosporaVS ribozyme cleavage by tuberactinomycin antibiotics.EMBO J14: 3247–3251

    PubMed  CAS  Google Scholar 

  92. von Ahsen U, Davies J, Schroeder R (1991) Antibiotic inhibition of group I ribozyme function.Nature353: 368–370

    Article  Google Scholar 

  93. von Ahsen U, Davies J, Schroeder R (1992) Non-competitive inhibition of group I intron RNA self-splicing by aminoglycoside antibiotics.J Mol Biol226: 935–941

    Article  Google Scholar 

  94. Stage TK, Hertel KJ, Uhlenbeck OC (1995) Inhibition of the hammerhead ribozyme by neomycin.RNA 1:95–101

    PubMed  CAS  Google Scholar 

  95. Wank H, Rogers J, Davies J, Schroeder R (1994) Peptide antibiotics of the tuberactinomycin family as inhibitors of group I intron RNA splicing.J Mol Biol236: 1001–1010

    Article  CAS  Google Scholar 

  96. Rogers J, Davies J (1994) The pseudodisaccharides: a novel class of group I intron splicing inhibitors.Nucl Acid Res22: 4983–4988

    Article  CAS  Google Scholar 

  97. Toon S, Rowland M (1979) Quantitative structure pharmocokinetic activity relationships with some tetracyclines.J Pharm Pharmacol (Suppl)31: 43P

    Google Scholar 

  98. Chia J-S, Wu H-L, Wang H-W, Chen D-S, Chen P-J (1997) Inhibition of hepatitis delta virus genomic ribozyme self-cleavage by aminoglycosides.J Biomed Sci4: 208–216

    Article  PubMed  CAS  Google Scholar 

  99. Waldsich C, Semrad K, Schroeder R (1998) Neomycin B inhibits splicing of thetdintron indirectly by interfering with translation and enhances missplicingin vivo. RNA4: 1653–1663

    CAS  Google Scholar 

  100. Hoch I, Berens C, Westhof E, Schroeder R (1998) Antibiotic inhibition of RNA catalysis: neomycin B binds to the catalytic core of thetdgroup I intron displacing essential metal ions.J Mol Biol282: 557–569

    Article  CAS  Google Scholar 

  101. Fourmy D, Yoshizawa S, Puglisi JD (1998) Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA.J Mol Biol277: 333–345

    Article  PubMed  CAS  Google Scholar 

  102. Cate JH, Yusupov MM, Yusupova GZ, Earnest TN, Noller HF (1999) X-ray crystal structures of 70S ribosome functional complexes.Science285: 2095–2104

    Article  PubMed  CAS  Google Scholar 

  103. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.Science289: 905–920

    Article  PubMed  CAS  Google Scholar 

  104. Stelzl U, Spahn CM, Nierhaus KH (2000) Selecting rRNA binding sites for the ribosomal proteins L4 and L6 from randomly fragmented rRNA: application of a method called SERF.Proc Natl Acad Sci USA97: 4597–4602

    Article  PubMed  CAS  Google Scholar 

  105. Fredrick K, Dunny GM, Noller HF (2000) Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits.J Mol Biol298: 379–394

    Article  PubMed  CAS  Google Scholar 

  106. Uhlenbeck OC (1987) A small catalytic oligoribonucleotide.Nature328: 596–600

    Article  PubMed  CAS  Google Scholar 

  107. Hinrichs W, Kisker C, Düvel M, Müller A, Tovar K, Hillen W, Saenger W (1994) Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance.Science264: 418–420

    Article  PubMed  CAS  Google Scholar 

  108. Gutell RR (1994) Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.Nucl Acid Res22: 3502–3507

    Article  CAS  Google Scholar 

  109. Noller HF (1999) On the origin of the ribosome: Coevolution of subdomains of tRNA and rRNA. In: RF Gesteland, TR Cech, JF Atkins (eds):The RNA World2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 197–219

    Google Scholar 

  110. Stern S, Powers T, Changchien LM, Noller HF (1989) RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA.Science244: 783–790

    Article  PubMed  CAS  Google Scholar 

  111. Moazed D, Noller HF (1989) Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites.Cell57: 585–597

    CAS  Google Scholar 

  112. Liu Y, Rocourt M, Pan S, Liu C, Leibowitz MJ (1992) Sequence and variability of the 5.8S and 26S rRNA genes ofPneumocystis carinii. Nucl Acid Res20: 3763–3772

    Article  CAS  Google Scholar 

  113. Cech TR, Damberger SH, Gutell RR (1994) Representation of the secondary and tertiary structure of group I introns.Nature Struct Biol1: 273–280

    Article  PubMed  CAS  Google Scholar 

  114. Damberger SH, Gutell RR (1994) A comparative database of group I intron structures.Nucl Acid Res22: 3508–3510

    Article  CAS  Google Scholar 

  115. Jacquier A, Michel F (1987) Multiple exon-binding sites in class II self-splicing introns.Cell50: 17–29

    Article  PubMed  CAS  Google Scholar 

  116. Michel F, Jacquier A (1987) Long-range intron-exon and intron-intron pairings involved in self-splicing of class II catalytic introns.Cold Spring Harbor Symp Quant Biol52: 201–212

    Article  PubMed  CAS  Google Scholar 

  117. Hertel KJ, Pardi A, Uhlenbeck OC, Koizumi M, Ohtsuka E, Uesugi S, Cedergren R, Eckstein F, Gerlach WL, Hodgson R et al (1992) Numbering system for the hammerhead.Nucl Acid Res20: 3252

    Article  CAS  Google Scholar 

  118. Wu H-N, Lin Y-J, Lin F-P, Makino S, Chang M-F, Lai MMC (1989) Human hepatitis delta virus RNA subfragments contain an autocleavage activity.Proc Natl Acad Sci USA86: 1831–1835

    Article  PubMed  CAS  Google Scholar 

  119. Been MD, Perotta AT, Rosenstein SP (1992) Secondary structure of the self-cleaving RNA of Hepatitis delta virus: Applications to catalytic RNA design.Biochemistry31: 11843–11852

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Berens, C. (2001). Interactions of tetracyclines with RNA. In: Nelson, M., Hillen, W., Greenwald, R.A. (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8306-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8306-1_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9511-8

  • Online ISBN: 978-3-0348-8306-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics