Skip to main content

Gene regulation by the tetracycline-inducible Tet repressor-operator system — molecular mechanisms at atomic resolution

  • Chapter
Tetracyclines in Biology, Chemistry and Medicine

Abstract

At present, three-dimensional structures characterizing specific tetracycline/protein interactions are available only for the Tet repressor, TetR. This is the regulatory switch for the most common resistance mechanism against tetracyclines, Tc, in Gram-negative bacteria. Crystallographic investigations with at least 2.5 A resolution of TetR/Tc complexes [1 2] and the TetR/DNA complex [3] provide a clear view of endpoints for the functional allosteric pathway of this distinct regulatory system and reveal mechanisms that underlie TetR/Tc recognition and induced conformational changes forcing dissociation of the repressor/operator-DNA complex, TetR/tetO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hinrichs W, Kisker C, Düvel M, Müller A, Tovar K, Hillen W, Saenger W (1994) Antibiotic resistance: Structure of the Tet repressor-tetracycline complex and mechanism of induction.Science264: 418–420

    Article  PubMed  CAS  Google Scholar 

  2. Kisker C, Hinrichs W, Tovar K, Hillen W, Saenger W (1995) The complex formed between Tet repressor and tetracycline-Mg2+reveals mechanism of antibiotic resistance.J Mol Biol247: 260–280

    Article  PubMed  CAS  Google Scholar 

  3. Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W (2000) Structural basis of gene regu-lation by the tetracycline inducible Tet repressor-operator system.Nat Struct Biol7: 215–219

    Article  PubMed  CAS  Google Scholar 

  4. Speer BS, Shoemaker NB, Salyers AA (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance.Clin Microbiol Rev5: 387–399

    PubMed  CAS  Google Scholar 

  5. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells.Science268: 1766–1769

    Article  PubMed  CAS  Google Scholar 

  6. Shockett PE, Schatz DG (1996) Diverse strategies for tetracycline-regulated inducible gene expression.Proc Natl Acad Sci USA93: 5173–5176

    Article  PubMed  CAS  Google Scholar 

  7. Freundlieb S, Baron U, Bonin AL, Gossen M, Bujard H (1997) Use of tetracycline-controlled gene expression systems to study mammalian cell cycle.Methods Enzymol283: 159–173

    Article  PubMed  CAS  Google Scholar 

  8. Förster K, Helbl V, Lederer T, Urlinger S, Wittenberg N, Hillen W (1999) Tetracycline-inducible expression systems with reduced basal activity in mammalian cells.Nucl Acid Res27: 708–710

    Article  Google Scholar 

  9. Baron U, Schnappinger D, Gossen M, Hillen W, Bujard H (1999) Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes.Proc Natl Acad Sci USA96: 1013–1018

    Article  PubMed  CAS  Google Scholar 

  10. Blau HM, Rossi FM (1999) Tet B or not tet B: advances in tetracycline-inducible gene expression.Proc Natl Acad Sci USA96: 797–799

    Article  PubMed  CAS  Google Scholar 

  11. McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants inEscherichia coll. Proc Natl Acad Sci USA 77:3974–3977

    Article  CAS  Google Scholar 

  12. Yamaguchi A, Udagawa T, Sawai T (1990) Transport of divalent cations with tetracycline as mediated by the transposon Tn/O-encoded tetracycline resistance protein.J Biol Chem265: 4089–4813

    Google Scholar 

  13. Bertrand KP, Postle K, Wray LV Jr, Reznikoff WS (1983) Overlapping divergent promoters control expression of TnlO tetracycline resistance.Gene23: 149–56

    Article  PubMed  CAS  Google Scholar 

  14. Levy SB (1984) Resistance to Tetracyclines. In: LE Bryan (ed.):Antimicrobial Drug Resistance.Academic Press, New York, pp 191–204

    Google Scholar 

  15. Levy SB (1988) Tetracycline resistance determinants are widespread.Amer Soc Microbiol News54: 418–421

    Google Scholar 

  16. Hillen W, Berens C (1994) Mechanisms underlying expression of Tn1O encoded tetracycline resistance.Annu Rev Microbiol48: 345–369

    Article  PubMed  CAS  Google Scholar 

  17. Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms.Arch Microbiol165: 359–369

    Article  PubMed  CAS  Google Scholar 

  18. Epe B, Woolley P (1984) The binding of 6-demethylchlortetracycline to 70S, 50S and 30S ribosomal particles: a quantitative study by fluorescence anisotropy.EMBO J3: 121–6

    PubMed  CAS  Google Scholar 

  19. Eckert B, Beck CF (1989) Overproduction of transposon TnlO-encoded tetracycline resistance protein results in cell death and loss of membrane potential.J Bacteriol171: 3557–3559

    PubMed  CAS  Google Scholar 

  20. Takahashi M, Altschmied L, Hillen W (1986) Kinetic and equilibrium characterization of the Tetrepressor-tetracycline complex by fluorescence measurements; evidence for divalent ion requirements and energy transfer.J Mol Biol187: 341–348

    Article  PubMed  CAS  Google Scholar 

  21. Jogun KH, Stezowski JJ (1976) Coordination and conformational aspects of oxytetracycline metal ion complexation.J Amer Chem Soc98: 6018–6026

    Article  CAS  Google Scholar 

  22. Ettner N, Metzger JW, Lederer T, Hulmes JD, Kisker C, Hinrichs W, Ellestad GA, Hillen W (1995) Proximity mapping of the Tet repressor-tetracycline-Fe2+complex by hydrogen peroxide mediated protein cleavage.Biochemistry22: 22–31

    Article  Google Scholar 

  23. Orth P, Schnappinger D, Sum PE, Ellestad GA, Hillen W, Saenger W, Hinrichs W (1999) Crystal structure of Tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)6-demethyl-6-deoxy-tetracycline.J Mol Biol285: 455–461

    Article  PubMed  CAS  Google Scholar 

  24. Orth P, Saenger W, Hinrichs W (1999) Tetracycline chelated Mg2tion initiates helix unwinding for Tet repressor induction.Biochemistry38: 191–198

    Article  PubMed  CAS  Google Scholar 

  25. Hlavka JJ, Boothe JH (eds) (1985)Handbook of Experimental Pharmacology The Tetracyclines.Springer-Verlag, Berlin-Heidelberg, 332–334

    Google Scholar 

  26. Sum PE, Lee VJ, Testa RT, Hlavka JJ, Ellestad GA, Bloom JD, Gluzman Y, Tally FP (1994) Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines.J Med Chem37: 184–188

    Article  PubMed  CAS  Google Scholar 

  27. Degenkolb J, Takahashi M, Ellestad GA, Hillen W (1991) Structural requirements of tetracyclinetet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with tet repressor.Antimicrob Agents Chemother35: 1591–1595

    Article  PubMed  CAS  Google Scholar 

  28. Müller G, Hecht B, Helbl V, Hinrichs W, Saenger W, Hillen W (1995) Characterisation of non-inducible Tet repressor mutants suggests conformational changes necessary for induction.Nat Struct Biol2: 693–703

    Article  PubMed  Google Scholar 

  29. Matthews KS, Falcon CM, Swint-Kruse L (2000) Relieving repression.Nat Struct Biol7: 184–187

    Article  PubMed  CAS  Google Scholar 

  30. Kisker C (1994) Antibiotika Resistenz: Röntgenstrukturanalyse des Tetracycline-Repressors and molekularer Mechanismus der Resistenz Regulation. Ph.D. Thesis, Freie Universität Berlin

    Google Scholar 

  31. Ettner N, Müller G, Berens C, Backes H, Schnappinger D, Schreppel T, Pfleiderer K, Hillen W (1996) xFast large scale purification of tetracycline repressor variants from overproducingEscherichia colistrains.J ChromatogrA 742: 95–105

    CAS  Google Scholar 

  32. Schnappinger D, Schubert P, Pfleiderer K, Hillen W (1998) Determinants of protein-protein recognition by four helix bundles: changing the dimerization specificity of Tet repressor.EMBO J17: 535–543

    Article  PubMed  CAS  Google Scholar 

  33. Schnappinger D, Schubert P, Berens C, Pfleiderer K, Hillen W (1999) Solvent-exposed residues in the Tet repressor (TetR) four-helix bundle contribute to subunit recognition and dimer stability.J Biol Chem274: 6405–6410

    Article  PubMed  CAS  Google Scholar 

  34. Brennan RG, Matthews BW (1989) The helix-turn-helix DNA binding motif.J Biol Chem264: 1903–1906

    PubMed  CAS  Google Scholar 

  35. Harrison SC (1992) A structural taxonomy of DNA-binding domains.Nature353: 715–719

    Article  Google Scholar 

  36. Orth P, Cordes F, Schnappinger D, Hillen W, Saenger W, Hinrichs W (1998) Conformational changes of the Tet repressor induced by tetracycline trapping.J Mol Biol279: 439–447

    Article  PubMed  CAS  Google Scholar 

  37. Schevitz RW, Otwinowski Z, Joachimiak A, Lawson CL, Sigler PB (1985) The three-dimensional structure of trp repressor.Nature317: 782–786

    Article  PubMed  CAS  Google Scholar 

  38. Weber IT, Steitz TA (1987) Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution.J Mol Biol198: 311–326

    Article  PubMed  CAS  Google Scholar 

  39. Wagenhöfer M, Hansen D, Hillen W (1988) Thermal denaturation of engineered tet repressor proteins and their complexes with tet operator and tetracycline studied by temperature gradient gel electrophoresis.Anal Biochem175: 422–432

    Article  PubMed  Google Scholar 

  40. Bennett MJ, Schlunegger MP, Eisenberg D (1995) 3D Domain swapping: A mechanism for oligomer assembly.Protein Sci4: 2455–2468

    Article  PubMed  Google Scholar 

  41. Berens C, Schnappinger D, Hillen W (1997) The role of the variable region in Tet repressor for inducibility by tetracycline.J Biol Chem272: 6936–6942

    Article  PubMed  CAS  Google Scholar 

  42. Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, Brennan RG, Lu P (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.Science271: 1247–1254

    Article  PubMed  CAS  Google Scholar 

  43. Schumacher MA, Choi KY, Lu F, Zalkin H, Brennan RG (1995) Mechanism of corepressor-mediated specific DNA binding by the purine repressor.Cell83: 147–155

    Article  PubMed  CAS  Google Scholar 

  44. Otwinowski Z, Schevitz RW, Zhang RG, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB (1988) Crystal structure of trp repressor/operator complex at atomic resolution.Nature335: 321–329

    Article  PubMed  CAS  Google Scholar 

  45. Heuer C, Hillen W (1988) Tet repressor-tet operator contacts probed by operator DNA-modification interference studies.J Mol Biol202: 407–415

    Article  PubMed  CAS  Google Scholar 

  46. Sizemore C, Wissmann A, Gülland U, Hillen W (1990) Quantitative analysis of Tn10 Tet repressor binding to a complete set of tet operator mutants.Nucl Acid Res18: 2875–2880

    Article  CAS  Google Scholar 

  47. Wissmann A, Baumeister R, Muller G, Hecht B, Helbl V, Pfleiderer K, Hillen W (1991) Amino acids determining operator binding specificity in the helix-turn-helix motif of Tn/0 Tet repressor.EMBO J10: 4145–4152

    PubMed  CAS  Google Scholar 

  48. Baumeister R, Helbl V, Hillen W (1992) Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants.J Mol Biol226: 1257–1270

    Article  PubMed  CAS  Google Scholar 

  49. Helbl V, Berens C, Hillen W (1995) Proximity probing of Tet repressor to tet operator by dimethylsulfate reveals protected and accessible functions for each recognized base-pair in the major groove.J Mol Biol245: 538–548

    Article  PubMed  CAS  Google Scholar 

  50. Schwabe JW (1997) The role of water in protein-DNA interactions.Curr Opin Struct Biol7: 126–134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Hinrichs, W., Fenske, C. (2001). Gene regulation by the tetracycline-inducible Tet repressor-operator system — molecular mechanisms at atomic resolution. In: Nelson, M., Hillen, W., Greenwald, R.A. (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8306-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8306-1_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9511-8

  • Online ISBN: 978-3-0348-8306-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics