Skip to main content
  • 355 Accesses

Abstract

Tetracyclines are a family of broad-spectrum antibiotics which have been used for decades to treat a variety of infections. Tetracyclines also have numerous non-antimicrobial properties which make them attractive for the treatment of inflammatory disorders and cancer. These include the ability to inhibit matrix metalloproteinases (MMPs), serine proteases, and various inflammatory cytokines such as TNF-a, iNOS, and PLA2(reviewed in [1]). The clinical value of the tetracyclines as antibiotics is enhanced by their low toxicity during short-term administration. However, the treatment of chronic disorders such as inflammation and cancer can require long-term, if not life-long treatment. This type of prolonged use of tetracyclines can be associated with certain treatment obstacles such as the emergence of antibiotic-resistant flora, gastrointestinal upset, photosensitivity and related skin disorders, all of which can put constraints on the administered dose. To circumvent obstacles associated with the development of microbial resistance and the normal balance of the GI flora, a series of chemically modified tetracyclines (CMTs) have been developed that lack anti-microbial activity but retain anti-inflammatory and anti-cancer activity. However, the chemical modifications that affect the antimicrobial activities of the tetracycline family do not necessarily translate into reduced photosensitivity. Therefore, phototoxicity may still limit the therapeutic potential of the non-antimicrobial CMTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golub LM, Lee H-M, Ryan ME (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms.Adv Dent Res12: 12–26

    Article  PubMed  CAS  Google Scholar 

  2. Layton AM, Cunliffe WJ (1993) Phototoxic eruptions due to doxycycline - a dose-related phenomenon.Clin Exp Dermatol18: 425–427

    Article  PubMed  CAS  Google Scholar 

  3. Frost P, Weinstein GD, Gomez EC (1972) Phototoxic potential of minocycline and doxycycline.Arch Dermatol105: 681–683

    Article  PubMed  CAS  Google Scholar 

  4. Bjellerup M, Ljunggren B (1987) Double blind cross-over studies on phototoxicity to three tetracycline derivatives in human volunteers.Photodermatology4: 281–287

    PubMed  CAS  Google Scholar 

  5. Blank H, Stanley CI, Catalano PM (1968) Photosensitivity studies with demethylchlortetracycline and doxycycline.Arch Dermatol97: 1–2

    Article  PubMed  CAS  Google Scholar 

  6. Bjellerup M (1986) Medium-wave ultraviolet radiation (UVB) is important in doxycycline photo-toxicity.Acta Dermato-Venereol (Stockh)66: 510–514

    CAS  Google Scholar 

  7. Spielmann H, Balls M, Dupuis J, Pape WJ, Pechovitch G, de Silva O, Holzhutter HG, Clothier R, Desolle P, Gerberick F et al (1998) The international EU/COLIPAin vitrophototoxicity validation study; results of phase II (blind trial). Part 1: The 3 T3 NRU phototoxicity test.Toxicol Vitro12: 305–327

    Article  CAS  Google Scholar 

  8. Spielmann H, Balls M, Dupuis J, Pape WJ, de Silva O, Holzhutter HG, Gerberick F, Liebsch M, Lovell WW, Pfannenbecker U (1997) A study on UV filter chemicals from Annex VII of European Union Directive 76/768/EEC, in thein vitro3 T3 phototoxicity test.ATLA26: 679–708

    Google Scholar 

  9. Lasarow RM, Isseroff R, Gomez EC (1992) Quantitativein vitroassessment of phototoxicity by a fibroblast-neutral red assay.J Invest Dermatol98: 725–729

    Article  PubMed  CAS  Google Scholar 

  10. Zerler B, Roemer E, Raabe H, Sizemore A, Reeves A, Harbell J (2000) Evaluation of the photo-toxic potential of chemically modified tetracyclines with the 3 T3 neutral red uptake phototoxicity test. In:M Balls, A-M van Zeller, ME Halder (eds):Progress in the Reduction Refinement and Replacement of Animal Experimentation.Elsevier Science B.V., Amsterdam, 545–554

    Google Scholar 

  11. Bjellerup M, Ljunggren B (1985) Photohemolytic potency of tetracyclines.J Invest Dermatol84: 262–264

    Article  PubMed  CAS  Google Scholar 

  12. Augustin C, Collombel C, Damour 0 (1997) Use of dermal equivalent and skin equivalent models for identifying phototoxic compoundsin vitro. Photodermatol Photomed13: 27–36

    Article  CAS  Google Scholar 

  13. Edwards SM, Donnelly TA, Sayre RM, Rheins LA (1994) Quantitativein vitroassessment of phototoxicity using a human skin model, skin2TM.Photodermatol Photoimmunol Photomed10: 111–117

    PubMed  CAS  Google Scholar 

  14. Hasan T, Kochevar IE, McAuliffe Cooperman BS, Abdulah D (1984) Mechanism of tetracycline phototoxicity.J Invest Dermatol83: 179–183

    Article  PubMed  CAS  Google Scholar 

  15. Miskoski S, Sanchez E, Garavano M, Lopez M, Soltermann AT, Garcia NA (1998) Singlet molevcular oxygen-mediated photo-oxidation of tetracyclines: kinetics, mechanism and microbiological implications.J Photochem Photobiol B-Biol43: 164–171

    Article  CAS  Google Scholar 

  16. Wiebe JA, Moore DE (1977) Oxidation photosensitized by tetracyclines.J Pharm Sci66: 186–189

    Article  PubMed  CAS  Google Scholar 

  17. Glette J, Sandberg S (1986) Phototoxicity of tetracyclines as related to singlet oxygen production and uptake by polymorphonuclear leukocytes.Biochem Pharmacol35: 2883–2885

    Article  PubMed  CAS  Google Scholar 

  18. Shea CR, Olack GA, Morrison H, Chen N, Hasan T (1983) Phototoxicity of lumidoxycycline.J Invest Dermatol101: 329–333

    Article  Google Scholar 

  19. Nilsson R, Swambeck G, Wennersten G (1975) Primary mechanisms of erythrocyte photolysis induced by biological sensitizers and phototoxic drugs.Photochem Photobiol22: 183–186

    Article  PubMed  CAS  Google Scholar 

  20. Riaz M, Pilpel N (1984) Complexation of tetracyclines with metal ions in relation to photosensitization.J Pharm Pharmacol36: 153–156

    Article  PubMed  CAS  Google Scholar 

  21. Blackwood RK (1969) Tetracyclines.Encyclop Chem Technol20: 1–33

    CAS  Google Scholar 

  22. Holzhutter HG (1997) A general measure of thein vitrophototoxicity derived from pairs of dose response curves and its use for predictingin vivophototoxicity of chemicals.ATGA25: 445–462

    Google Scholar 

  23. Pato ML (1977) Tetracycline inhibits propagation of deoxyribonucleic acid replication and alters membrane properties.Antimicrob Agents Chemother 11:318–323

    Article  PubMed  CAS  Google Scholar 

  24. Reboud A-M, Dubost S, Reboud J-P (1982) Photoincorporation of tetracycline into rat-liver ribosomes and subunits.Eur J Biochem124: 389–396

    Article  PubMed  CAS  Google Scholar 

  25. Kohn KW (1961) Mediation of divalent metal ions in the binding of tetracycline to macromolecules.Nature191: 1156–1158

    Article  PubMed  CAS  Google Scholar 

  26. Peyriere H, Hillaire-Buys D, Dereure O, Meunier L, Blayac JP (1999) Muco-cutaneous pigmentation and photosensitization induced by minocycline hydrochloride.J Dermatol Treatment10: 105–112

    Article  CAS  Google Scholar 

  27. Kelly RG, Kanegis LA (1967) Metabolism and tissue distribution of radioisotopically labeled minocycline.Toxicol Appl Pharmacol11: 171–183

    Article  PubMed  CAS  Google Scholar 

  28. Shapiro LE, Knowles SR, Shear NH (1997) Comparative safety of tetracycline, minocycline, and doxycycline.Arch Dermatol133: 1224–1230

    Article  PubMed  CAS  Google Scholar 

  29. Taurog A, Dorris M, Doerge D (1996) Minocycline and the thyroid: antithyroid effects of the drug, and the role of thyroid peroxidase in minocycline-induced black pigemntation of the gland.Thyroid6: 211–219

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Zerler, B.R. (2001). Tetracycline photodynamics. In: Nelson, M., Hillen, W., Greenwald, R.A. (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8306-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8306-1_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9511-8

  • Online ISBN: 978-3-0348-8306-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics