Skip to main content

Structure/function studies of doxycycline effects on matrix metalloproteinase activity and cartilage degeneration

  • Chapter
  • 354 Accesses

Abstract

The observation that doxycycline and other tetracyclines reduced the level of matrix metalloproteinase (MMP) activity in periodontal disease, even in germ-free rats [1 2] prompted the testing of these compounds for treatment of osteoarthritis (OA) [3 4], rheumatoid arthritis (for extensive review of this topic see [5-9]) and other diseases in which MMP-mediated destruction of connective tissues is prominent, such as abdominal aortic aneurysms [10] and wound healing in diabetes [11]. Doxycycline and chemically modified tetracyclines have been tested in animal models of OA, a disease in which the degradation of joint connective tissues is thought to depend, at least partially, on MMP activity. In our laboratory, we have employed doxycycline to treat canine experimental OA. We have examined the effect of treatment with oral doxycycline on the MMP of tissues from patients with rheumatoid arthritis, see [5-9], and patients with OA at the time of joint replacement surgery [3]. Similar studies have been performed using minocycline for treatment of adjuvant arthritis in rats [12], and for chemically modified tetracycline-7 (cmt-7) in a spontaneous model of OA in Taft-Hartley guinea pigs [13]. The guinea pig model resembles human disease in that the development of OA is weight-and age-dependent. Treatment with doxycycline slowed disease progression in the animal models, while MMP activity was reduced in both animal and human tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golub LM, Lee HM, Lehrer G, Nemiroff A, McNamara TF, Kaplan R, Ramamurthy NS (1983) Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. J Periodont Res 18: 516–526

    Article  PubMed  CAS  Google Scholar 

  2. Greenwald RA, Golub LM, Lavietes B, Ramamurthy NS, Gruber B, Laskin RS, McNamara TF (1987) Tetracyclines inhibit human synovial collagenase in vivo and in vitro. J Rheumatol 14: 28–32

    PubMed  CAS  Google Scholar 

  3. Smith GN Jr, Yu LP Jr, Brandt KD, Capello WN (1998) Oral administration of doxycycline reduces collagenase and gelatinase activities in extracts of human osteoarthritic cartilage. J Rheumatol 25: 532–535

    PubMed  CAS  Google Scholar 

  4. Smith GN Jr, Mickler EA, Hasty KA, Brandt KD (1999) Specificity of inhibition of matrix metalloproteinase activity by doxycycline: Relationship to structure of the enzyme. Arthritis Rheum 42: 1140–1146

    Article  PubMed  CAS  Google Scholar 

  5. Alarcon GS (2000) Tetracyclines for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 9: 1491–1498

    Article  PubMed  CAS  Google Scholar 

  6. Langevitz P, Livenah A, Bank I, Pras M (2000) Benefits and risks of minocycline in rheumatoid arthritis. Drug Safety 22: 405–414

    Article  PubMed  CAS  Google Scholar 

  7. Alarcon GS, Bartolucci AA (2000) Radiographic assessment of disease progression in rheumatoid arthritis patients treated with methotrexate or minocycline. J Rheumatol 27: 530–534

    PubMed  CAS  Google Scholar 

  8. Eichenfield AH (1999) Minocycline and autoimmunity. Curr Opin Pediatr 11: 447–456

    Article  PubMed  CAS  Google Scholar 

  9. O’Dell JR, Paulsen G, Haire CE, Blakely K, Palmer W, Wees S, Eckhoff PJ, Klassen LW, Churchill M, Doud D et al (1999) Treatment of early seropositive rheumatoid arthritis with minocycline: four-year followup of a double-blind, placebo-controlled trial. Arthritis Rheum 42: 1691–1695

    Article  PubMed  Google Scholar 

  10. Curci JA, Mao D, Bohner DG, Allen BT, Rubin BG, Reilly JM, Sicard GA, Thompson RW (2000) Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms. J Vasc Surg 31: 325–342

    Article  PubMed  CAS  Google Scholar 

  11. Ramamurthy NS, Kucine AJ, McClain SA, McNamara TF, Golub LM (1998) Topically applied CMT-2 enhances wound healing in streptozotocin diabetic rat skin. Adv Dent Res 12: 144–148

    Article  PubMed  CAS  Google Scholar 

  12. Zernicke RF, Wohl GR, Greenwald RA, Moak SA, Leng W, Golub LM (1997) Administration of systemic matrix metalloproteinase inhibitors maintains bone mechanical integrity in adjuvant arthritis. J Rheumatol 24: 1324–1331

    PubMed  CAS  Google Scholar 

  13. de Bri E, Lei W, Svensson O, Chowdhury M, Moak SA, Greenwald RA (1998) Effect of an inhibitor of matrix metalloproteinases on spontaneous osteoarthritis in guinea pigs. Adv Dent Res 12: 82–85

    Article  PubMed  Google Scholar 

  14. Yu LP Jr, Smith GN Jr, Brandt KD, Myers SL, O’Connor BL, Brandt DA (1992) Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. Arthritis Rheum 35: 1150–1159

    Article  PubMed  Google Scholar 

  15. Yu LP Jr, Smith GN Jr, Brandt KD, O’Connor BL, Myers SL (1993) Therapeutic administration of doxycycline slows the progression of cartilage destruction in canine osteoarthritis. Trans Orthop Res Soc 18: 724

    Google Scholar 

  16. Cole AA, Chubinskaya S, Luchene Li, Chlebek K, Orth MW, Greenwald RA, Kuettner KE, Schmid TM (1994) Doxycycline disrupts chondrocyte differentiation and inhibits cartilage matrix degradation. Arthritis Rheum 37: 1727–1734

    Article  PubMed  CAS  Google Scholar 

  17. Cole AA, Chubinskaya S, Chlebek K, Orth MW, Luchene LL, Schmid TM (1994) Doxycycline inhibition of cartilage matrix degradation. Ann NYAcad Sci 732: 414–415

    Article  CAS  Google Scholar 

  18. Arsenis C, Moak SA, Greenwald RA (1992) Tetracyclines (TETs) inhibit the synthesis and/or activity of cartilage proteinases in vivo and in vitro. Matrix Suppl 11: 314

    Google Scholar 

  19. Curci JA, Petrinec D, Liao S, Golub LM, Thompson RW (1998) Pharmacologic suppression of experimental abdominal aortic aneurysms: a comparison of doxycycline and four chemically modified tetracyclines. J Vasc Surg 28: 1082–1093

    Article  PubMed  CAS  Google Scholar 

  20. Ryan ME, Ramamurthy NS, Sorsa T, Golub LM (1999) MMP-mediated events in diabetes. Ann NYAcad Sci 878: 311–334

    Article  CAS  Google Scholar 

  21. Rifkin BR, Vernillo AT, Golub LM (1993) Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: a potential therapeutic role for tetracyclines and their chemically-modified analogs. J Periodontol 64 (8 Suppl): 819–827

    Article  PubMed  CAS  Google Scholar 

  22. Sasaki T, Kaneko H, Ramamurthy NS, Golub LM (1991) Tetracycline administration restores osteoblast structure and function during experimental diabetes. Anat Rec 231: 25–34

    Article  PubMed  CAS  Google Scholar 

  23. Golub LM, McNamara TF, D’Angelo G, Greenwald RA, Ramamurthy NS (1987) A non-antibacterial chemically-modified tetracycline inhibits mammalian collagenase activity. J Dent Res 66: 1310–1314

    Article  PubMed  CAS  Google Scholar 

  24. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T (1998) Tetracyclines inhibit con-nective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 12: 12–26

    Article  PubMed  CAS  Google Scholar 

  25. Burns FR, Stack MS, Gray RD, Paterson CA (1989) Inhibition of purified collagenase from alkali-burned rabbit corneas. Invest Ophthalmol Visual Sci 30: 1569–1575

    CAS  Google Scholar 

  26. Ryan ME, Greenwald RA, Golub LM (1996) Potential of tetracyclines to modify cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 8: 238–247

    Article  PubMed  CAS  Google Scholar 

  27. Suomalainen K, Sorsa T, Ingman T, Lindy O, Golub LM (1992) Tetracycline inhibition identifies the cellular origin of interstitial collagenases in human periodontal diseases in vivo. Oral Microbiol Immunol 7: 121–123

    Article  PubMed  CAS  Google Scholar 

  28. Smith GN Jr, Brandt KD, Hasty KA (1996) Activation of recombinant human neutrophil procollagenase in the presence of doxycycline results in fragmentation of the enzyme and loss of enzyme activity. Arthritis Rheum 39: 235–244

    Article  PubMed  CAS  Google Scholar 

  29. Yu LP Jr, Smith GN Jr, Hasty KA, Brandt KD (1991) Doxycycline inhibits type XI collagenolytic activity in human osteoarthritic cartilage and of gelatinase. J Rheumatol 18: 1450–1452

    PubMed  Google Scholar 

  30. Nip LH, Uitto V-J, Golub LM (1993) Inhibition of epithelial cell matrix metalloproteinases by tetracyclines. J Periodont Res 28: 379–385

    Article  PubMed  CAS  Google Scholar 

  31. Greenwald RA, Golub LM, Ramamurthy NS, Chowdhury M, Moak SA, Sorsa T (1998) In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone 22: 33–38

    Article  PubMed  Google Scholar 

  32. Smith GN Jr, Brandt KD, Hasty KA (1994) Procollagenase is reduced to inactive fragments upon activation in the presence of doxycycline. Ann NYAcad Sci 732: 436–438

    Article  CAS  Google Scholar 

  33. Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, Patel IR, Abramson SB (1996) A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci USA 93: 14014–14 0149

    Article  PubMed  CAS  Google Scholar 

  34. Cillari E, Milano S, D’Agostino P, Di Bella G, La Rosa M, Barbera C, Ferlazzo V, Cammarata G, Grimaudo S, Tolomeo M et al (1998) Modulation of nitric oxide production by tetracyclines and chemically modified tetracyclines. Adv Dent Res 12: 126–130

    Article  PubMed  CAS  Google Scholar 

  35. D’Agostino P, Arcoleo F, Barbera C, Di Bella G, La Rosa M, Misiano G, Milano S, Brai M, Cammarata G et al (1998) Tetracycline inhibits the nitric oxide synthase activity induced by endotoxin in cultured murine macrophages. Eur J Pharmacol 346: 283–290

    Article  PubMed  Google Scholar 

  36. Vernillo AT, Rifkin BR (1998) Effects of tetracyclines on bone metabolism. Adv Dent Res 12: 56–62

    Article  PubMed  CAS  Google Scholar 

  37. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96: 13 496–13 500

    Article  CAS  Google Scholar 

  38. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglical activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95: 15 769–15 774

    Article  CAS  Google Scholar 

  39. Weingart JD, Sipos EP, Brem H (1995) The role of minocycline in the treatment of intracranial 9L glioma. J Neurosurg 82: 635–640

    Article  PubMed  CAS  Google Scholar 

  40. Clark WM (1997) Cytokines and reperfusion injury. Neurology 49 (Suppl 4): S10–4

    Article  PubMed  CAS  Google Scholar 

  41. Yamaki K, Yoshida N, Kimura T, Ohbayashi H, Takagi K (1998) Effects of cytokines and minocycline on subacute lung injuries induced by repeated injection of lipopolysaccharide. Kansenshogaku Zasshi 72: 75–82

    PubMed  CAS  Google Scholar 

  42. Jonat C, Chung FZ, Baragi VM (1996) Transcriptional downregulation of stromelysin by tetracy cline. J Cell Bloch 60: 341–347

    Article  CAS  Google Scholar 

  43. Hanemaaijer R, Visser H, Koolwijk P, Sorsa T, Salo T, Golub LM, van Hinsbergh VW (1998) Inhibition of MMP synthesis by doxycycline and chemically modified tetracyclines (CMTs) in human endothelial cells. Adv Dent Res 12: 114–118

    Article  PubMed  CAS  Google Scholar 

  44. Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE (2000) Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 43: 801–811

    Article  PubMed  CAS  Google Scholar 

  45. Vincenti MP, Coon CI, Brinckerhoff CE (1998) Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-lbeta-stimulated synovial fibroblasts. Arthritis Rheum 41: 1987–1994

    Article  PubMed  CAS  Google Scholar 

  46. Vincenti MP, Coon CI, Lee O, Brinckerhoff CE (1994) Regulation of collagenase gene expression by IL-1 beta requires transcriptional and post-transcriptional mechanisms. Nucleic Acids Res 22: 4818–4827

    Article  PubMed  CAS  Google Scholar 

  47. Shlopov BV, Lie WR, Mainardi CL, Cole AA, Chubinskaya S, Hasty KA (1997) Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum 40: 2065–2074

    Article  PubMed  CAS  Google Scholar 

  48. Shlopov BV, Stuart JM, Gumanovskaya ML, Hasty KA (2001) Regulation of cartilage collagenase by doxycycline. J Rheumatol 28: 835–842

    PubMed  CAS  Google Scholar 

  49. Shlopov BV, Smith GN Jr, Cole AA, Hasty KA (1999) Differential response patterns to doxycycline and tat in down-regulation of collagenases in osteoarthritic and normal human chondrocytes. Arthritis Rheum 42: 719–727

    Article  PubMed  CAS  Google Scholar 

  50. Craig RG, Yu Z, Xu L, Barr R, Ramamurthy N, Boland J, Schneir M, Golub LM (1998) A chemically modified tetracycline inhibits streptozotocin-induced diabetic depression of skin collagen synthesis and steady-state type I procollagen mRNA. Biochim Biophys Acta 1402: 250–260

    Article  PubMed  CAS  Google Scholar 

  51. Schneir M, Ramamurthy N, Golub L (1990) Minocycline-treatment of diabetic rats normalizes skin collagen production and mass: possible causative mechanisms. Matrix 10: 112–123

    Article  PubMed  CAS  Google Scholar 

  52. Sasaki T, Ramamurthy NS, Yu Z, Golub LM (1992) Tetracycline administration increases protein (presumably procollagen) synthesis and secretion in periodontal ligament fibroblasts of streptozotocin-induced diabetic rats. J Periodont Res 27: 631–639

    Article  PubMed  CAS  Google Scholar 

  53. Davies SR, Cole AA, Schmid TM (1996) Doxycycline inhibits type X collagen synthesis in avian hypertrophic chondrocyte cultures. J Biol Chem 271: 25 966–25 970

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Gerald, N., Smith, J., Hasty, K.A. (2001). Structure/function studies of doxycycline effects on matrix metalloproteinase activity and cartilage degeneration. In: Nelson, M., Hillen, W., Greenwald, R.A. (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8306-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8306-1_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9511-8

  • Online ISBN: 978-3-0348-8306-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics