Skip to main content

Cyclic activation and inactivation of brain vessels involving inflammatory mediators — implications for stroke

  • Chapter
Inflammation and Stroke

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Endothelium has until recently been viewed by members of the stroke community as a relatively bland tissue that serves as an inert coating for the vascular tubes. Recent studies of endothelial cells in culture systems have proven these simplistic notions untenable and have shed light on the manifold functions of the endothelium under normal as well as pathological conditions. Endothelium can be characterized as a dynamic, heterogenous, disseminated organ [1] that possesses vital secretory, synthetic, metabolic, and immunologic functions. Endothelial cell surface covers an area of 1 to 7 square meters and weighs about 1 kg [1]. Endothelial cells are heterogeneous [2]. They exhibit organ-specific specialization along with differences in function. It is less well known that endothelial cells express different phenotypes along different segments of the same vascular tree or even within neighboring cells. This variability in phenotype and the existence of subtypes enables endothelial cells to upregulate or downregulate surface proteins in response to local microenvironmental conditions and quickly and efficiently integrate multiple extra-cellular signals to serve the needs of the underlying tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91: 3527–3561

    PubMed  CAS  Google Scholar 

  2. Kumar S, West DC, Ager A (1987) Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36:57–70

    Article  PubMed  CAS  Google Scholar 

  3. Davies MG, Hagen PO (1993) The vascular endothelium. A new horizon. Ann of Surg 218: 593–609

    Article  CAS  Google Scholar 

  4. Stern DM, Esposito C, Gerlach H, Gerlach M, Ryan J, Handley D, Nawroth P (1991) Endothelium and regulation of coagulation. Diabetes Care 14 (Suppl 1): 160–166

    Article  PubMed  CAS  Google Scholar 

  5. Rosenberg RD, Aird WC (1999) Vascular-bed-specific hemostasis and hypercoagulable states. New Engl J Med 340: 1555–1564

    Article  PubMed  CAS  Google Scholar 

  6. Angleton P, Chandler WL, Schmer G (1989) Diurnal variation of tissue-type plasmino-gen activator and its rapid inhibitor (PAI-1). Circulation 79: 101–106

    Article  PubMed  CAS  Google Scholar 

  7. Marler JR, Price TR, Clark JE, Robertson T, Mohr JP, Hier DB, Wolf PA, Caplan LR, Foulkes MA (1989) Morning increase in onset of ischemic stroke. Stroke 20: 473–476

    Article  PubMed  CAS  Google Scholar 

  8. Labrecque G, Soulban G (1991) Biological rhythms in the physiology and pharmacolo-gy of blood coagulation. Chronobiol Int 8: 361–372

    Article  PubMed  CAS  Google Scholar 

  9. Pober JS, Cotran RS (1990) Cytokines and endothelial cell biology. Physiol Rev 70: 427–451

    PubMed  CAS  Google Scholar 

  10. Becker BF, Heindl B, Kupatt C, Zahler S (2000) Endothelial function and hemostasis. Z Kardiol 89: 160–167

    PubMed  CAS  Google Scholar 

  11. Cunningham DD, Pulliam L, Vaughan PJ (1993) Protease nexin-1 and thrombin: injury—related processes in the brain. Thromb Haemost 70: 168–171

    PubMed  CAS  Google Scholar 

  12. Kuchler-Bopp S, Delaunoy JP, Artault JC, Zaepfel M, Dietrich JB (1999) Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells. NeuroReport 10: 1347–1353

    Article  PubMed  CAS  Google Scholar 

  13. Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M et al (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem Biophys Res Commun 261: 108–112

    Article  PubMed  CAS  Google Scholar 

  14. Lin M-Ch, Almus-Jacobs F, Chen H-H, Parry GCN, Mackman N, Shyy JY-j, Chien Shu (1997) Shear stress induction of tissue factor gene. J Clin Invest 99: 737–744

    Article  PubMed  CAS  Google Scholar 

  15. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519–560

    PubMed  CAS  Google Scholar 

  16. Khachigian LM, Resnick N, Gimbrone MA Jr, Collins T (1995) Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Invest 96: 1169–1175

    Article  PubMed  CAS  Google Scholar 

  17. Everett AD, Le Cras TD, Xue C, Johns RA (1998) eNos expression is not altered in pulmonary vascular remodeling due to increased pulmonary blood flow. Am J Physiol 274: L1058–1065

    PubMed  CAS  Google Scholar 

  18. Turner RR, Beckstead JH, Warnke RA, Wood GS (1987) Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am J Clin Pathol 87: 569–575

    PubMed  CAS  Google Scholar 

  19. Wong D, Dorovini-Zis K (1992) Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J Neuroimmunol 39: 11–22

    Article  PubMed  CAS  Google Scholar 

  20. Page C, Rose M, Yacoub M, Pigott R (1992) Antigenic heterogeneity of vascular endothelium. Am J Pathol 141: 673–683

    PubMed  CAS  Google Scholar 

  21. Antonov AS, Key NS, Smirnov MD, Jacob HS, Vercellotti GM, Smirnov VN (1992) Pro-thrombotic phenotype diversity of human aortic endothelial cells in culture. Thromb Res 67: 135–145

    Article  PubMed  CAS  Google Scholar 

  22. Guillot PV, Guan J, Liu L, Kuivenhoven JA, Rosenberg RD, Sessa WC, Aird WC (1999) A vascular bed-specific pathway regulates cardiac expression of endothelial nitric oxide synthase. J Clin Invest 103: 799–805

    Article  PubMed  CAS  Google Scholar 

  23. Zahler S, Kupatt C, Becker BF (2000) Endothelial preconditioning by transient oxida-Cyclic activation and inactivation of brain vessels involving inflammatory mediators—implications for stroke tive stress reduces inflammatory responses of cultured endothelial cells to TNF-a. FASEB J 14: 555–564

    PubMed  CAS  Google Scholar 

  24. Liu J, Ginis I, Spatz M, Hallenbeck JM (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278: C144–153

    PubMed  CAS  Google Scholar 

  25. Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29: 1937–1950

    Article  PubMed  CAS  Google Scholar 

  26. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga K, Mikoshiba K et al (1990) “Ischemic tolerance” phenomenon found in the brain. Brain Res 528: 21–24

    Article  PubMed  CAS  Google Scholar 

  27. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM (1997) Lipopolysaccharide pretreatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res 748: 267–270

    Article  PubMed  CAS  Google Scholar 

  28. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17: 483–490

    Article  PubMed  CAS  Google Scholar 

  29. Hallenbeck JM, Dutka AJ, Vogel SN, Heldman E, Doron DA, Feuerstein G (1991) Lipopolysaccharide-induced production of tumor necrosis factor activity in rats with and without risk factors for stroke. Brain Res 541: 115–12

    Article  PubMed  CAS  Google Scholar 

  30. Woodroofe MN, Cuzner ML (1993) Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5: 583–588

    Article  PubMed  CAS  Google Scholar 

  31. Seilhean D, Kobayashi K, He Y, Uchihara T, Rosenblum O, Katlama C, Bricaire F, Dyckaerts C, Hauw J-J (1997) Tumor necrosis factor-a, microglia and astrocytes in AIDS dementia complex. Acta Neuropathol 93: 508–517

    Article  PubMed  CAS  Google Scholar 

  32. Gourin CG, Shackford SR (1997) Production of tumor necrosis factor-a and interleukin-113 by human cerebral microvascular endothelium after percussive trauma. J Trauma 42: 1101–1107

    CAS  Google Scholar 

  33. Warner SJ, Libby P (1989) Human vascular smooth muscle cells. Target for and source of tumor necrosis factor. J Immunology 142: 100–109

    CAS  Google Scholar 

  34. Barath P, Fishbein MC, Cao J, Berebson J, Helfant RH, Forrester JS (1990) Detection and localization of tumor necrosis factor in human atheroma. Am J Cardiol 65: 297–302

    Article  PubMed  CAS  Google Scholar 

  35. Kishikawa H, Shimokama T, Watanabe T (1993) Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, IL-6 and TNF in human aortic intima. Role of cell mediated immunity in human atherogenesis. Virchows Arch A Pathol Anat Histopathol 423: 433–442

    Article  PubMed  CAS  Google Scholar 

  36. Buttini M, Mir A, Appel K, Wiederhold KH, Limonta S, Gebicke-Haerter PJ, Boddeke FIWGM (1997) Lipopolysaccharide induces expression of tumor necrosis factor alpha in rat brain: inhibition by methylprednisolone and by rolipram. Br J Pharmacol 122: 1483–1489

    Article  PubMed  CAS  Google Scholar 

  37. Breder CD, Hazuka C, Ghayur T, Klug C, Huginin M, Yasuda K, Teng M, Saper CB (1994) Regional induction of tumor necrosis factor alpha expression in the mouse brain after systemic lipopolysaccharide administration. Proc Natl Acad Sci USA 91: 11393–11397

    Article  PubMed  CAS  Google Scholar 

  38. Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994) Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25: 1481–1488

    Article  PubMed  CAS  Google Scholar 

  39. Benveniste EN, Tang LP, Law RM (1995) Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10. Int J Dev Neurosci 13: 341–349

    Article  PubMed  CAS  Google Scholar 

  40. Siren A-L, Heldman E, Doron D, Lysko PG, Yue T-L, Liu Y, Feuerstein G, Hallenbeck JM (1992) Release of proinflammatory and prothrombotic mediators in the brain and peripheral circulation in spontaneously hypertensive and normotensive Wistar-Kyoto rats. Stroke 23: 1643–1651

    Article  PubMed  CAS  Google Scholar 

  41. Siren A-L, Feuerstein G, Hallenbeck JM (1993) Increased release of tumor necrosis factor alpha into the cerebrospinal fluid and peripheral circulation of aged rats. Stroke 24: 880–888

    Article  PubMed  CAS  Google Scholar 

  42. Hallenbeck JM, Dutka AJ, Kochanek PM, Siren A, Pezeshkpour GH, Feuerstein G (1988) Stroke risk factors prepare rat brainstem tissues for modified local Shwartzman reaction. Stroke 19: 863–869

    Article  PubMed  CAS  Google Scholar 

  43. Feuerstein G, Hallenbeck JM, Vanatta B, Rabinovich R, Perera PY, Vogel SN (1990) Effect of gram-negative endotoxin on levels of serum corticosterone, TNF-a circulating blood cells, and the survival of rats. Circ Shock 30: 265–278

    PubMed  CAS  Google Scholar 

  44. Hallenbeck JM (1996) Inflammatory reactions at the blood-endothelial interface in acute stroke. In: BK Siesjo, T Wieloch (eds): Adv Neurol 71; Cellular and molecular mechanisms of ischemic brain damage. Lippincott-Raven, Philadelphia, 281–300

    Google Scholar 

  45. Feuerstein GZ, Liu T, Barone FC (1994 Winter) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 6: 341–360

    PubMed  CAS  Google Scholar 

  46. Ishii Y, Partridge CA, Del Vecchio PJ, Malik AB (1992) Tumor necrosis factor-alpha mediated decrease in glutathione increases the sensitivity of pulmonary vascular endothelial cells to H2O2. J Clin Invest 89: 794–802

    Article  PubMed  CAS  Google Scholar 

  47. Weber C, Erl W, Pietsch A, Strobel M, Ziegler-Heitbrock HW, Weber PC (1994) Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arterioscler Thromb 14: 1665–1673

    Article  PubMed  CAS  Google Scholar 

  48. Terry CM, Clikeman JA, Hoidal JR, Callahan KS (1999) TNF-a and IL-1a induce heme oxygenase-1 via protein kinase C, Ca2+, and Phospholipase A2 in endothelial cells. Am J Physiol 276: H1493–H1501

    PubMed  CAS  Google Scholar 

  49. Visner GA, Dougall WC, Wilson JM, Burr IA, Nick HS (1990) Regulation of manganese superoxide dismutase by lipopolysaccharid, interleukin-1, and tumor necrosis factor. J Biol Chem 265: 2856–2864

    PubMed  CAS  Google Scholar 

  50. Wong GI-IW, Goeddel DV (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242: 941–944

    Article  PubMed  CAS  Google Scholar 

  51. McCoubrey WK Jr, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247: 725–732

    Article  PubMed  CAS  Google Scholar 

  52. Terry CM, Clikeman JA, Hoidal JR, Callahan KS (1998) Effect of tumor necrosis factor-a and interleukin-la on heme oxygenase-1 expression in human endothelial cells. Am J Physiol 274: H883–H891

    PubMed  CAS  Google Scholar 

  53. Dwyer BE, Nishimura RN, Lu S-Y (1995) Differential expression of heme oxygenase-1 in cultured cortical neurons and astrocytes determined by the aid of a new heme oxygenase antibody. Response to oxidative stress. Brain Res Mol Brain Res 30: 37–47

    Article  PubMed  CAS  Google Scholar 

  54. Poss DK, Tonegawa S (1997) Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci USA 94: 10925–10930

    Article  PubMed  CAS  Google Scholar 

  55. Mautes AEM, Kim DH, Sharp FR, Panter S, Sato M, Maida N, Bergeron M, Guenther K, Noble LJ (1998) Induction of heme oxygenase (H0–1) in the contused spinal cord of the rat. Brain Res 795:17–24

    Article  PubMed  CAS  Google Scholar 

  56. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61: 748–755

    Article  PubMed  CAS  Google Scholar 

  57. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercelotti GM (1992) Ferritin: a cytoprotective antioxidant stratagem of endothelium. J Biol Chem 267: 18148–18153

    PubMed  CAS  Google Scholar 

  58. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046

    Article  PubMed  CAS  Google Scholar 

  59. Janssen YMW, Van Houten B, Borm PJA, Mossman BT (1993) Biology of disease. Cell and tissue responses to oxidative damage. Lab Invest 69: 261–274

    PubMed  CAS  Google Scholar 

  60. Richter C, Park J-W, Ames B (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467

    Article  PubMed  CAS  Google Scholar 

  61. Bandy B, Davison AJ (1990) Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging. Free Radic Biol Med 8: 523–539

    Article  PubMed  CAS  Google Scholar 

  62. Wallace DC (1992) Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 256: 628–632

    Article  PubMed  CAS  Google Scholar 

  63. Williams MD, Van Remmen H, Conrad CC, Huang TT, Epstein CJ, Richardson A (1998) Increased oxidative damage is correlated to altered mitochondrial function in hetero-zygous manganese superoxide dismutase knockout mice. J Biol Chem 273: 28510–28515

    Article  PubMed  CAS  Google Scholar 

  64. Cortopassi G, Wang E (1995) Modeling the effects of age-related mtDNA mutation accumulation: Complex I deficiency, superoxide and cell death. Biochim Biophys Acta 1271: 171–176

    Article  PubMed  Google Scholar 

  65. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78: 547–581

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Ruetzler, C.A., Hallenbeck, J.M. (2001). Cyclic activation and inactivation of brain vessels involving inflammatory mediators — implications for stroke. In: Feuerstein, G.Z. (eds) Inflammation and Stroke. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8297-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8297-2_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9508-8

  • Online ISBN: 978-3-0348-8297-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics