Skip to main content

Robust Additive Secret Sharing Schemes over Z m

  • Conference paper
Cryptography and Computational Number Theory

Abstract

In a threshold secret sharing scheme, a dishonest participant can disrupt the operation of the system by submitting junk instead of his/her share. We propose two constructions for threshold secret sharing schemes that allow identification of cheaters where the secret is an element of the ringZ m . The main motivation of this work is to design RSA-based threshold cryptosystems, such as robust threshold RSA signature, in which additive (multiplicative) threshold secret sharing schemes over Abelian groups with cheater identification play the central role. The first construction extends Desmedt-Frankel’s construction of secret sharing over Z m to provide cheater detection, and the second construction uses perfect hash families to construct a robust (t, n) scheme from a (t, t) scheme. We prove security of these schemes and assess their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and M. Naor, Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions. Algorithmica, 16 (1996), 434–449.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Atici, S.S. Magliveras, D. R. Stinson and W.D. Wei, Some Recursive Constructions for Perfect Hash Families. Journal of Combinatorial Designs, 4 (1996), 353–363.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. C. Benaloh, Secret sharing homomorphisms: Keeping shares of a secret secret. In Advances in Cryptology - Crypto ‘86, LNCS, 263 (1986), 251–260.

    Google Scholar 

  4. S. R. Blackburn, Combinatorics and Threshold Cryptology. In Combinatorial Designs and their Applications (Chapman and Hall/CRC Research Notes in Mathematics), CRC Press, London, 1999,49–70.

    Google Scholar 

  5. S.R. Blackburn, S. Blake-Wilson, M. Burmester and S. Galbraith, Shared generation of shared RSA keys. Tech. Report CORR98–19, University of Waterloo, 1998.

    Google Scholar 

  6. S. R. Blackburn, M. Burmester, Y. Desmedt and P. R. Wild, Efficient multiplicative sharing schemes. In Advances in Cryptology - Eurocrypt ‘86,LNCS, 1070 (1996), 107–118.

    MathSciNet  Google Scholar 

  7. G. R. Blakley, Safeguarding cryptographic keys. In Proceedings of AFIPS 1979 National Computer Conference, 48 (1979), 313–317.

    Google Scholar 

  8. D. Boneh and M. Franklin, Efficient generation of shared RSA keys. In Advances in Cryptology - Crypto ‘87,LNCS, 1294 (1997), 425–439.

    Google Scholar 

  9. C. Boyd, Digital multisignatures, In Cryptography and coding,Clarendon Press, 1989, 241–246.

    Google Scholar 

  10. E. Brickell and D. Stinson, The Detection of Cheaters in Threshold Schemes. In Advances in Cryptology - Proceedings of CRYPTO ‘88, LNCS, 403 (1990), 564–577.

    MathSciNet  Google Scholar 

  11. Z. J. Czech, G. Havas and B.S. Majewski, Perfect Hashing. Theoretical Computer Science, 182 (1997), 1–143.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Cocks, Split knowledge generation of RSA parameters. In Cryptography and Coding, 6th IMA Conference, LNCS, 1355 (1997), 89–95.

    Google Scholar 

  13. Y. Desmedt, Some recent research aspects of threshold cryptography. In Information Security Workshop, Japan (JSW ‘87), LNCS, 1396 (1998), 99–114.

    Google Scholar 

  14. Y. Desmedt, G. Di Crescenzo and M. Burmester, Multiplicative non-abelian sharing schemes and their application to threshold cryptography. InAdvances in Cryptology - Asiacrypt ‘84, LNCS, 917 (1995), 21–32.

    Google Scholar 

  15. Y. Desmedt and Y. Frankel, Homomorphic zero-knowledge threshold schemes over any finite group. SIAM J. Disc. Math., 7 (1994), 667–679.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Desmedt, B. King, W. Kishimoto and K. Kurosawa, A comment on the efficiency of secret sharing scheme over any finite abelian group. In Information Security and Privacy,ACISP’98 (Third Australasian Conference on Information Security and Privacy), LNCS, 1438 (1998), 391–402.

    MathSciNet  Google Scholar 

  17. Y. Frankel, A practical protocol for large group oriented networks. In Advances in Cryptology - Eurocrypt ‘89, LNCS, 434 (1989), 56–61.

    Google Scholar 

  18. E. Karnin, J. Greene, and M. Hellman, On Secret Sharing Systems. IEEE Transactions on Information Theory, 29 (1983), 35–41.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Mehlhorn, Data Structures and Algorithms. Vol. 1, Springer-Verlag, 1984.

    Google Scholar 

  20. A. Shamir, How to Share a Secret. Communications of the ACM, 22 (1979), 612–613.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Simmons, W.-A. Jackson and K. Martin, The Geometry of Shared Secret Schemes. Bulletin of the Institute of Combinatorics and its Applications (ICA), 1 (1991), 71–88.

    MathSciNet  MATH  Google Scholar 

  22. D.R. Stinson, An explication of secret sharing schemes. Des. Codes Cryptogr., 2 (1992), 357–390.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Tompa and H. Woll, How To Share a Secret with Cheaters. Journal of Cryptology, 1 (1988), 133–138.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Safavi-Naini, R., Wang, H. (2001). Robust Additive Secret Sharing Schemes over Z m . In: Lam, KY., Shparlinski, I., Wang, H., Xing, C. (eds) Cryptography and Computational Number Theory. Progress in Computer Science and Applied Logic, vol 20. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8295-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8295-8_26

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9507-1

  • Online ISBN: 978-3-0348-8295-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics