Skip to main content

Elliptic Curve Factorization Using a “Partially Oblivious” Function

  • Conference paper
Cryptography and Computational Number Theory

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 20))

Abstract

Let N = P · R where P is a prime not dividing R. We show how a special class of functions f : Z N → Z can be used to help obtain P given N. The requirements of f are that it be non-trivial and that f (x) = f (x mod P). Such a function does not “see” R. Hence the name partially oblivious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Mathematics of Computation, 65 (1996), 1701–1715.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Brent, Some integer factorization algorithms using elliptic curves,Computer Science Laboratory, Australian National University, Report TR-CS-96–02, (September 1995).

    Google Scholar 

  3. R. Brent, R. Crandall, K. Dilcher and C. van Halewyn, Three new factors of Fermat numbers, Preprint, 1999, (available online at http://www.mscs.dal.ca/dilcher/Preprints/BCDH.ps.

    Google Scholar 

  4. N. G. de Bruijn, On the number of positive integers ≤ x and free of prime factors > y, Indag. Math, 13 (1951), 50–60.

    Google Scholar 

  5. A. Fujioka, T. Okamoto and S. Miyaguchi, ESIGN: An efficient digital signature implementation for smart cards, Advances in Cryptology-Proceedings of EUROCRYPT 91, Lecture Notes in Computer Science, 547, Springer-Verlag (1991), 446–457.

    Google Scholar 

  6. A. Lenstra and H. W. Lenstra, Eds., The development of the number field sieve, Lecture Notes in Mathematics, 1554, Springer-Verlag (1993).

    MATH  Google Scholar 

  7. H. W. Lenstra, Factoring integers with elliptic curves, Annals of Mathematics, 126 (1987), 649–673.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Montgomery, An FFT extension of the elliptic curve method of factorization, Ph.D. dissertation, Mathematics Department, UCLA, (1992).

    Google Scholar 

  9. E. Okamoto and R. Peralta, Faster factoring of integers of a special form, IEICE Transactions on Fundamentals of Electronics, Communications, and Computer Sciences, E79-A (1996), 489–493.

    Google Scholar 

  10. T. Okamoto and S. Uchiyama, A new public-key cryptosystem as secure as factoring, Lecture Notes in Computer Science, Advances in Cryptology-Proceedings of EUROCRYPT 98,1403, Springer-Verlag (1998), 308–318.

    MathSciNet  Google Scholar 

  11. J. M. Pollard, A Monte Carlo method for factorization, BIT, 15 (1975), 331–334.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology-Proceedings of EUROCRYPT 84, Lecture Notes in Computer Science, 209, SpringerVerlag (1985), 169–182.

    MathSciNet  Google Scholar 

  13. T. Takagi, Fast RSA-type cryptosystem modulo p k q, Lecture Notes in Computer Science, Advances in Cryptology-Proceedings of CRYPTO 98, 1462, Springer-Verlag (1998), 318–326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Peralta, R. (2001). Elliptic Curve Factorization Using a “Partially Oblivious” Function. In: Lam, KY., Shparlinski, I., Wang, H., Xing, C. (eds) Cryptography and Computational Number Theory. Progress in Computer Science and Applied Logic, vol 20. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8295-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8295-8_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9507-1

  • Online ISBN: 978-3-0348-8295-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics