Skip to main content

Energy balance models — viewed from stochastic dynamics

  • Conference paper
Stochastic Climate Models

Part of the book series: Progress in Probability ((PRPR,volume 49))

Abstract

In this article the bottom part in the hierarchy of climate models — energy balance models — is revisited by a mathematician working in stochastic dynamics. The review of mostly deterministic 0- to 2-dimensional models focuses on the mathematical problems of equilibria, stability and bifurcations. Stochastic extensions can profit from the availability of well developed mathematical theories. To give an example, we review an approach of stochastic resonance from the theory of large deviations for dynamical systems. Stochastic resonance was born in the area of energy balance models, in an attempt to find a simple explanation of glaciation cycles. It still plays a role, as is shown by very recent applications to the ENSO system in another simple two-dimensional model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arnold, Random dynamical systems, Springer: Berlin 1998.

    MATH  Google Scholar 

  2. L. Arnold, Hasselmann’s Program Revisited: The Analysis of Stochasticity in Deterministic Climate Models, in this volume.

    Google Scholar 

  3. L. Arnold, N. Sri Namachchivaya and K.R. Schenk-Hoppé, Toward an understanding of stochastic Hopf bifurcation: a case study, International Journal of Bifurcation and Chaos, 6 (1996), 1947–1975.

    Article  Google Scholar 

  4. L. Arnold, H. Crauel and J.P. Eckmann (eds.), Lyapunov exponents. Vol. 1486. LNM. Springer: Berlin 1991.

    MATH  Google Scholar 

  5. P. Baxendale, Stability along trajectories at a stochastic bifurcation point, in: H. Crauel, M. Gundlach (eds.), Stochastic dynamics, 1–25. Springer: Berlin 1999.

    Chapter  Google Scholar 

  6. K. Bar-Eli and R.J. Field, Earth-average temperature: a time delay approach. J. Geophys. Research, 103 (1998), 25949–25956.

    Article  Google Scholar 

  7. P. Baxendale, A stochastic Hopf bifurcation. Probab. Th. Rel. Fields, 99 (1994), 581–616.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Baxendale and D. Stroock, Large deviations and stochastic flows of diffeomorphisms. Probab. Th. Rel. Fields, 80 (1988), 169–215.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Benzi, G. Parisi, A. Sutera and A. Vulpiani, A theory of stochastic resonance in climatic change. Siam J. Appl. Math., 43 (1983), 565–578.

    Article  MathSciNet  Google Scholar 

  10. K. Bhattacharya, M. Ghil and I.L. Vulis, Internal variability of an energy balance climate model. J. Atmos. Sci., 39 (1982), 1747–1773.

    Article  Google Scholar 

  11. M.I. Budyko, The effect of solar radiation variations on the climate of the earth. Tellus, 21 (1969), 611–619.

    Article  Google Scholar 

  12. H. Crauel, Markov measures for random dynamical systems. Stochastics and Stochastics Reports, 37 (1991), 153–173.

    MathSciNet  MATH  Google Scholar 

  13. H. Crauel, A. Debussche and F. Flandoli, Random attractors. J. Dynamics Diff. Equ., 9 (1997), 307–341.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Crauel, P. Imkeller and M. Steinkamp, Bifurcations of one-dimensional stochastic differential equations, in: H. Crauel and M. Gundlach (eds.), Stochastic dynamics, 27–47. Springer: Berlin 1999.

    Chapter  Google Scholar 

  15. W. Ebeling, Chaos — Ordnung — Information: Selbstorganisation in Natur und Technik, 2. Aufl. (German), Deutsch-Taschenbuecher, 74 (1991), Frankfurt a. Main: H. Deutsch: Frankfurt.

    MATH  Google Scholar 

  16. K. Fraedrich, Catastrophe and resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback. Quart. J. Roy. Met. Soc, 105 (1979), 147–168.

    Article  Google Scholar 

  17. K. Fraedrich, Structural and stochastic analysis of a zero-dimensional climate system. Quart. J. Roy. Met. Soc., 104 (1978), 416–474.

    Article  Google Scholar 

  18. C. Frankignoul and K. Hasselmann, Stochastic climate models. Part II. Application to sea surface temperature anomalies and thermocline variability. Tellus, 29 (1977), 289–305.

    Article  Google Scholar 

  19. M. Freidlin, Quasi-deterministic approximation, metastability and stochastic resonance, submitted to Physica D (1999).

    Google Scholar 

  20. M. Freidlin and A. Wentzell, Random perturbations of dynamical systems, second edition, Springer: Berlin 1998.

    Book  MATH  Google Scholar 

  21. J.A. Freund, A. Neiman and L. Schimansky-Geier, Stochastic Resonance and Noise Induced Phase Coherence, in this volume.

    Google Scholar 

  22. L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic resonance. Reviews of Modem Physics, 70 (1998), 223–287.

    Article  Google Scholar 

  23. M. Ghil and S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, Springer: Berlin 1987.

    Book  MATH  Google Scholar 

  24. M. Ghil, Climate sensitivity, energy balance models, and oscillatory climate models. J. Geophys. Res., 89 (1984), 1280–1284.

    Article  Google Scholar 

  25. M. Ghil, Energy-balance models: an introduction, in: A. Berger (ed.), Climatic variations and variability: facts and theories, D. Reidel: Dordrecht, Boston, London 1981.

    Google Scholar 

  26. M. Ghil, Climate stability for a Sellers-type model. J. Atmos. Sci., 33 (1976), 3–20.

    Article  MathSciNet  Google Scholar 

  27. K. Hasselmann, Stochastic climate models. Part I. Theory. Tellus, 28 (1976), 473–484.

    Article  Google Scholar 

  28. I.M. Held and M.J. Suarez, Simple albedo feedback models of the icecaps. Tellus, 36 (1974), 613–628.

    Google Scholar 

  29. G. Hetzer, S-shapedness for energy balance climate models of Sellers-type, in: J.I. Diaz (ed.), The Mathematics of Models for Climatology and Environment, Springer: Berlin 1997.

    Google Scholar 

  30. G. Hetzer, A functional reaction-diffusion equation from climate modeling: S-shapedness of the principal branch, Diff. and Integral Equ., 8 (1995), 1047–1059.

    MathSciNet  MATH  Google Scholar 

  31. G. Hetzer, A parameter dependent time-periodic reaction-diffusion equation from climate modeling: S-shapedness of the principal branch of fixed points of the time-1 map, Diff. and Integral Equ., 7 (1994), 1419–1425.

    MathSciNet  MATH  Google Scholar 

  32. G. Hetzer, The structure of the principal component for semilinear diffusion equations from energy balance climate models. Houston J. Math., 16 (1990), 203–216.

    MathSciNet  MATH  Google Scholar 

  33. G. Hetzer, H. Jarausch and W. Mackens, A multiparameter sensitivity analysis of a 2D diffusive climate model, Impact Comput. Sci. Eng., 1 (1989), 327–393.

    Article  MATH  Google Scholar 

  34. G. Hetzer and P. Schmidt, Analysis of energy balance models, in: V. Lakshmikantham (ed.), Proceedings of the First World Congress of Nonlinear Analysts ′92, W. de Gruyter: Berlin 1996.

    Google Scholar 

  35. G. Hetzer and P. Schmidt, Global existence and asymptotic behavior for a quasilinear reaction-diffusion system from climate modeling, J. Math. Anal. Appl., 160 (1992), 250–262.

    Article  MathSciNet  Google Scholar 

  36. G. Hetzer and P. Schmidt, A global attractor and stationary solutions for a reaction diffusion system arising from climate modeling, Nonlinear Analysis: Theory, Methods and Appl., 14 (1990), 915–926.

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Holden, B. Oeksendal, J. Uboee and T. Zhang, Stochastic partial differential equations. A modeling, white noise functional approach, Probability and Its Applications, Birkhaeuser: Basel 1996.

    Google Scholar 

  38. W. Horsthemke and R. Lefever, Noise-induced transitions, Springer: Berlin 1984.

    MATH  Google Scholar 

  39. P. Imkeller and B. Schmalfuss, The conjugacy of stochastic and random differential equations and the existence of global attractors, preprint, HU Berlin, 1999.

    Google Scholar 

  40. P. Jung, Periodically driven stochastic systems. Physics Reports, 234 (1993), 175–295.

    Article  MathSciNet  Google Scholar 

  41. H. Keller and G. Ochs, Numerical approximation of random attractors, in: H. Crauel and M. Gundlach (eds.), Stochastic dynamics, 93–115. Springer: Berlin 1999.

    Chapter  Google Scholar 

  42. R.Z. Khasminskii, Stochastic stability of differential equations, Sijthoff and Noordhoff: Alphen 1980.

    Book  Google Scholar 

  43. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica VII, 4 (1940), 284–304.

    MathSciNet  Google Scholar 

  44. J.L. Lions, R. Temam and S. Wang, Models for the coupled atmosphere and ocean (CAO 1). Comput. Mech. Adv., 1 (1993), 5–54.

    MathSciNet  MATH  Google Scholar 

  45. J.L. Lions, R. Temam and S. Wang, New formulation of the primitive equations of atmosphere and applications, Nonlinearity 5 (1992), 237–288.

    Article  MathSciNet  MATH  Google Scholar 

  46. J.L. Lions, R. Temam and S. Wang, On the equation of the large-scale ocean. Nonlinearity, 5 (1992), 1007–1053.

    Article  MathSciNet  MATH  Google Scholar 

  47. B. McNamara and K. Wiesenfeld, Theory of stochastic resonance, Physical Review A, 39 (1989), 4854–4869.

    Article  Google Scholar 

  48. S.E. Mohammed, The Lyapunov spectrum and stable manifolds for stochastic linear delay equations. Stochastics and Stochastics Reports, 29 (1990), 89–131.

    MathSciNet  MATH  Google Scholar 

  49. S.E. Mohammed and M. Scheutzow, Lyapunov exponents and stochastic flows of linear and affine hereditary systems, in: M. Pinsky, V. Wihstutz (eds.), Diffusion processes and related problems in analysis, Vol. II: stochastic flows, Progress in Probability, 27 (1992), 141–169, Birkhäuser: Basel.

    Chapter  Google Scholar 

  50. C. Nicolis, Long-term climatic transitions and stochastic resonance. J. Stat. Phys., 70 (1993), 3–14.

    Article  MATH  Google Scholar 

  51. C. Nicolis, Long-term climatic variability and chaotic dynamics. Tellus, 39 (1987), 1–9.

    MathSciNet  Google Scholar 

  52. C. Nicolis, Self-oscillations and predictability in climate systems, Tellus, 36 (1984), 1–10.

    MathSciNet  Google Scholar 

  53. C. Nicolis, Stochastic aspects of climatic transitions — responses to periodic forcing, Tellus, 34 (1982), 1–9.

    Article  MathSciNet  Google Scholar 

  54. C. Nicolis and G. Nicolis, Stochastic aspects of climatic transitions — additive fluctuations. Tellus, 33 (1981), 225–234.

    Article  MathSciNet  Google Scholar 

  55. C. Nicolis and G. Nicolis, Environmental fluctuation effects on the global energy balance. Nature, 281 (1979), 132–134.

    Article  Google Scholar 

  56. S. Namachchivaya, Stochastic bifurcation, Appl. Marth. and Comp., 38 (1990), 101–159.

    Article  MATH  Google Scholar 

  57. G.R. North, Analytical solution to a simple climate model with diffusive heat transport, J. Atmos. Sci., 32 (1975), 1301–1307.

    Article  Google Scholar 

  58. G.R. North, Theory of energy-balance climate models, J. Atmos. Sci., 32 (1975), 2033–2043.

    Article  Google Scholar 

  59. G.R. North, R.E. Calahan and J.A. Coakley, Energy balance climate models. Rev. Geophys. Space Phys., 19 (1981), 91–121.

    Article  Google Scholar 

  60. D. Olbers, A gallery of stochastic problems from climate physics, in this volume.

    Google Scholar 

  61. E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations. Lecture Notes in CIS, 176 (1992), 200–217.

    MathSciNet  Google Scholar 

  62. C. Penland and P.D. Sardeshmukh, The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 (1995), 1999–2024.

    Article  Google Scholar 

  63. G. da Prato and J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press: Cambridge 1996.

    Book  MATH  Google Scholar 

  64. G. da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press: Cambridge 1992.

    Book  MATH  Google Scholar 

  65. B. Rozovskii, Stochastic evolution equations. Linear theory and applications to nonlinear filtering, Kluwer 1990.

    Google Scholar 

  66. W.B. Sellers, A global climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteor., 8 (1969), 301–320.

    Article  Google Scholar 

  67. K.R. Schenk-Hoppé, Random Attractors — general properties, existence, and applications to stochastic bifurcation theory. Discrete and continuous dynamical systems, 4 (1998), 99–130.

    Article  MathSciNet  MATH  Google Scholar 

  68. K.R. Schenk-Hoppé, Deterministic and stochastic Duffing-van der Pol oscillators are non-explosive. Z. angew. Math. Phys., 47 (1996).

    Google Scholar 

  69. K.R. Schenk-Hoppé, Bifurcation Scenarios of the Noisy Duffing-van der Pol Oscillator. Nonlinear Dynamics, 11 (1996), 255–274.

    Article  MathSciNet  Google Scholar 

  70. B. Schmalfuss, The random attractor of the stochastic Lorenz system. ZAMP, 48 (1997), 951–974.

    Article  MathSciNet  MATH  Google Scholar 

  71. B. Schmidt, Bifurcation of stationary solutions for Legendre type boundary value problems arising from energy balance models. Nonlinear Analysis: Theory, Methods and Appl., 30 (1997), 3645–3656.

    Article  MATH  Google Scholar 

  72. M.V. Tretyakov, Numerical studies of stochastic resonance, Preprint Nr. 322, Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin 1997.

    Google Scholar 

  73. J.B. Walsh, An introduction to stochastic partial differential equations, Ecole d’été de probabilité de St Flour XiV-1984, P.L. Hennequin (ed.), Lecture Notes in Mathematics, 1180 (1984), 265–439. Springer: Berlin.

    Google Scholar 

  74. B. Wang, A. Barcilon and Z. Fang, Stochastic dynamics of El Niño-Southern Oscillation. J. Atmos. Sci., 56 (1999), 5–23.

    Article  Google Scholar 

  75. B. Wang and Z. Fang, Chaotic oscillations of tropical climate: A dynamic system theory for ENSO, J. Atmos. Sci., 53 (1996), 2786–2802.

    Article  Google Scholar 

  76. S. Wang, On the 2D model of large-scale atmospheric motion: well-posedness and attractors, Nonlinear Analysis: Theory, Methods and Appl., 18 (1992), 17–60.

    Article  Google Scholar 

  77. S. Wang, Approximate inertial manifolds for the 2D model of atmosphere, Numer. Funct. Anal. and Optimiz., 11 (1991), 1043–1070.

    Article  MATH  Google Scholar 

  78. V. Wihstutz, Perturbation methods for Lyapunov exponents, in: H. Crauel and M. Gundlach (eds.), Stochastic dynamics, 209-239.

    Google Scholar 

  79. D. Wolf-Gladrow, Physik des Klimasystems, Vorlesungsmanuskript WS 1996/97, Alfred-Wegener-Institut für Polar-und Meeresforschung, Bremerhaven 1997.

    Google Scholar 

  80. S. Yoden, Bifurcation properties of a quasi-geostrophic, barotropic, low-order model with topography, J. Meteorol. Soc. Japan, 63 (1985), 535–546.

    Google Scholar 

  81. J. Zabczyk, A Mini Course on Stochastic Partial Differential Equations, in this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Imkeller, P. (2001). Energy balance models — viewed from stochastic dynamics. In: Imkeller, P., von Storch, JS. (eds) Stochastic Climate Models. Progress in Probability, vol 49. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8287-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8287-3_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9504-0

  • Online ISBN: 978-3-0348-8287-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics