Skip to main content

Stochastic confinement of Rossby waves by fluctuating eastward flows

  • Conference paper
Stochastic Climate Models

Part of the book series: Progress in Probability ((PRPR,volume 49))

Abstract

The effect of stochastic fluctuations in the background zonal velocity field on the energy dispersion of stationary wave responses to meridionally localised forcing is considered, using the non-divergent, barotropic vorticity equation. It is found that for small noise levels or large lengthscales in the noise autocovariance function, the oscillatory structure of the solutions is not altered. However, for noise levels (or autocovariance lengthscales) comparable to or larger (smaller) than those observed in the circulation at 300mb, the marginal density functions of the solution process displays a pronounced attenuation away from the stationary wave source. This indicates that fluctuations in the velocity field inhibit the dispersion of wave energy. The symmetry of the marginal PDFs about the source rather than about the equator indicates that the localisation is primarily an integrated effect of backscattering by potential vorticity gradients in regions of real refractive index, and not due to attenuation by regions of imaginary refractive index or by critical lines in the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Branstator, Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40 (1983), 1689–1708.

    Article  Google Scholar 

  2. G. Brunet and P. Haynes, Low-latitude reflection of rossby wave trains. J. Atmos. Sci., 53 (1996), 482–496.

    Article  Google Scholar 

  3. L. Campbell and S.A. Maslowe, Forced rossby wave packets in barotropic shear flows with critical layers. Dyanm. Atmos. Ocean., 28 (1998), 9–37.

    Article  Google Scholar 

  4. I.M. Held, Stationary and quasi-stationary eddies in the extratropical atmosphere: Theory. In B. Hoskins and R. Pearce, editors, Large Scale Dynamical Processes in the Atmosphere, pages 127-168. Academic Press, 1983.

    Google Scholar 

  5. B.J. Hoskins and T. Ambrizzi, Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 (1993), 1661–1671.

    Article  Google Scholar 

  6. B.J. Hoskins and D.J. Karoly, The steady linear response of a spherical atmosphere to thermal and orographie forcing. J. Atmos. Sci., 38 (1981), 1179–1196.

    Article  Google Scholar 

  7. P. Imkeller, A.H. Monahan and L. Pandolfo, Some mathematical remarks concerning the localisation of planetary waves in stochastic background flow. In this volume, 2000.

    Google Scholar 

  8. D.J. Karoly, Rossby wave propagation in a barotropic atmosphere. Dynam. Atmos. Oceans, 7 (1983), 111–125.

    Article  Google Scholar 

  9. J.B. Keller and G. Veronis, Rossby waves in the presence of random currents. J. Geophys. Res., 74 (1969), 1941–1951.

    Article  MATH  Google Scholar 

  10. G.N. Kiladis, G.A. Meehl and K.M. Weickmann, Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial pacific. J. Geophys. Res., 99 (1994), 18527–18544.

    Article  Google Scholar 

  11. G.N. Kiladis and K.M. Weickmann, Circulation anomalies associated with tropical convection during northern winter. Month. Weath. Rev., pages 1900-1923, 1992.

    Google Scholar 

  12. G.N. Kiladis and K.M. Weickmann, Extratropical forcing of tropical pacific convection during northern winter. Month. Weath. Rev., 120 (1992), 1924–1938.

    Article  Google Scholar 

  13. G.N. Kiladis and K.M. Weickmann, Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Month. Weath. Rev., 125 (1997), 1997–2013.

    Article  Google Scholar 

  14. P.D. Killworth and M.E. McIntyre, Do rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161 (1985), 449–492.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Li and T.R. Nathan, The global atmospheric response to low-frequency tropical forcing: Zonally averaged basic states. J. Atmos. Sci., 51 (1994), 3412–3426.

    Article  Google Scholar 

  16. L. Li and T.R. Nathan, Effects of low-frequency tropical forcing on intraseasonal tropical-extratropical interactions. J. Atmos. Sci., 54 (1997), 332–346.

    Article  Google Scholar 

  17. A.H. Monahan and L. Pandolfo, Meridional localisation of planetary waves in stochastic zonal flows. J. Atmos. Sci., in review.

    Google Scholar 

  18. L. Pandolfo, Observational aspects of the low-frequency intraseasonal variability of the atmosphere in middle latitudes. In Advances in Geophysics, 34 (1993), 93–174. Academic Press.

    Article  Google Scholar 

  19. L. Pandolfo and A. Sutera, Rossby waves in a fluctuating zonal mean flow. Tellus, 43A(1991), 257–265.

    Google Scholar 

  20. J. Pedlosky, Geophysical Fluid Dynamics. Springer, New York, 1987.

    Book  MATH  Google Scholar 

  21. C. Rossby and Co-workers, Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centres of action. J. Mar. Res., 2 (1939), 38–55.

    Google Scholar 

  22. P. Sardeshmukh, C. Penland and M. Newman, Rossby waves in a fluctuating medium. In this volume, 2000.

    Google Scholar 

  23. D. Sengupta, Localization of rossby waves over random topography: Two-layer ocean. J. Phys. Oceanography, 24 (1994), 1065–1069.

    Article  Google Scholar 

  24. D. Sengupta, L.I. Piterbarg and G.M. Reznik, Localization of topographic rossby waves over random relief. Dynam. Atmos. Oceans, 17 (1992), 1–21.

    Article  Google Scholar 

  25. P. Sheng, Introduction to Wave Scattering, Localisation, and Mesoscopic Phenomena. Academic Press, San Diego, 1995.

    Google Scholar 

  26. R.E. Thomson, The propagation of planetary waves over a random topography. J. Fluid. Mech., 70 (1975), 267–285.

    Article  MATH  Google Scholar 

  27. J. Vanneste, Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech., 407 (2000), 105–122.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Vanneste, Rossby-wave frequency change induced by small-scale topography. J. Phys. Ocean., in review.

    Google Scholar 

  29. G.-Y. Yang and B.J. Hoskins. Propagation of rossby waves of nonzero frequency. J. Atmos. Sci., 53 (1996), 2365–2378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Monahan, A.H., Pandolfo, L., Imkeller, P. (2001). Stochastic confinement of Rossby waves by fluctuating eastward flows. In: Imkeller, P., von Storch, JS. (eds) Stochastic Climate Models. Progress in Probability, vol 49. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8287-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8287-3_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9504-0

  • Online ISBN: 978-3-0348-8287-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics