Skip to main content

Algebras of approximation sequences: Fractality

  • Chapter
Problems and Methods in Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 121))

Abstract

This paper deals with a fundamental property of an approximation sequence which is responsible for the uniformity of certain limiting processes: its fractality. Roughly speaking, a sequence is fractal if the knowledge of any of its infinite subsequences allows to reconstruct the whole sequence up to a sequence tending to zero in the norm. Typical features of a fractal sequence (A n) are the existence of the limit of the condition numbers of the matrices A n and the existence of the limit in the sense of the Hausdorff metric of the spectra, the pseudospectra, and the numerical ranges of the A n. It will be moreover shown that every approximation sequence possesses a fractal subsequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Arveson, C*-algebras and numerical linear algebra. J. Funct. Anal. 122 (1994), 333–360.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Böttcher, Pseudospectra and singular values of large convolution operators. J. Integral Equations Appl. 6 (1994), 3, 267–301.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Böttcher, B. Silbermann, Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York, Berlin, Heidelberg 1999.

    Book  Google Scholar 

  4. F. F. Bonsall, J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. London Math. Soc. Lecture Note Series 2, Cambridge University Press, Cambridge 1971.

    Google Scholar 

  5. F. Chatelin, Spectral Approximation of Linear Operators. Academic Press, New York 1983.

    Google Scholar 

  6. K. E. Gustafson, D. K. M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices. Springer Verlag, New York 1996.

    Google Scholar 

  7. R. Hagen, S. Roch, B. Silbermann, Spectral Theory of Approximation Methods for Convolution Equations. Birkhäuser Verlag, Basel, Boston, Berlin 1995.

    Book  Google Scholar 

  8. F. Hausdorff, Set Theory. Chelsea Publ. Comp., New York 1957.

    Google Scholar 

  9. H. Landau, The notion of approximate eigenvalues applied to an integral equation of laser theory. Q. Appl. Math., April 1977, 165–171.

    Google Scholar 

  10. B. V. Limaye, Spectral Perturbation and Approximation with Numerical Experiments. Proc. of the Centre for Math. Analysis Vol. 13, Australian National University 1986.

    Google Scholar 

  11. L. Reichel, L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices. Linear Algebra Appl. 162 (1992), 153–185.

    Article  MathSciNet  Google Scholar 

  12. S. Roch, Numerical ranges of large Toeplitz matrices. Linear Algebra Appl. 282 (1998), 185–198.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Roch, Spectral approximation of Wiener-Hopf operators with almost periodic generating function. Submitted to: Numer. Funct. Anal. Optimization.

    Google Scholar 

  14. S. Roch, Pseudospectra of operator polynomials. Submitted to: Proceedings of the IWOTA 1998, Groningen.

    Google Scholar 

  15. S. Roch, B. Silbermann, Limiting sets of eigenvalues and singular values of Toeplitz matrices. Asymptotic Anal. 8 (1994), 293–309.

    MathSciNet  MATH  Google Scholar 

  16. S. Roch, B. Silbermann, C*-algebra techniques in numerical analysis. J. Oper. Theory 35 (1996), 2, 241–280.

    MathSciNet  MATH  Google Scholar 

  17. L. N. Trefethen, Pseudospectra of matrices. — In: D. F. Griffiths, G. A. Watson (Eds.), Numerical Analysis 1991, Longman 1992, 234–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Siegfried Prössdorf

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Roch, S. (2001). Algebras of approximation sequences: Fractality. In: Elschner, J., Gohberg, I., Silbermann, B. (eds) Problems and Methods in Mathematical Physics. Operator Theory: Advances and Applications, vol 121. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8276-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8276-7_25

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9500-2

  • Online ISBN: 978-3-0348-8276-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics