Skip to main content

On a Hierarchical Three-Point Basis in the Space of Piecewise Linear Functions over Smooth Surfaces

  • Chapter
Problems and Methods in Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 121))

Abstract

In this paper we consider a smooth boundary surface of a three-dimensional domain and the space of piecewise linear functions defined over a uniform triangular grid. We introduce a wavelet basis which is a variant of the well-known three-point hierarchical basis with a simple modification near the boundary points of the global patches of parametrization. Each wavelet is the linear combination of no more than three finite element functions defined over a grid from a hierarchy of triangulations. For the spaces spanned by this basis, the approximation and inverse properties in a certain range of Sobolev spaces are well known. Consequently, the simple basis is a Riesz basis and can be used to precondition operator equations, e.g. boundary element methods. Since the construction of wavelets with and without zero boundary values is part of the setting, the wavelets can also be used for finite element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beylkin, G., Coifman, R., & Rokhlin, V., Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math., 44, pp. 141–183, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  2. Canuto, C., Tabacco, A., & Urban, K., The wavelet element method Part I: Construction and Analysis, Appl. Comp. Harm. Anal., 6, pp. 1–52, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. Canuto, C., Tabacco, A., & Urban, K., The wavelet element method Part II: Realization and additional features in 2D and 3D, to appear in Appl. Comp. Harm. Anal..

    Google Scholar 

  4. Canuto, C., Tabacco, A., & Urban, K., Numerical solution of elliptic problems by the wavelet element method, in: Proceedings of the 2nd ENUMATH 97 conference, H.G. Bock et al. (eds.), World Scientific, Singapore, pp. 17–37, 1998.

    Google Scholar 

  5. Cohen, A., Daubechies, I., & Feauveau, J.-C., Biorthogonal bases of compactly supported wavelets, Comm. Pure and Appl. Math., 45, pp. 485–560, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahmen, W., Stability of multiscale transformations, Journal of Fourier Analysis and Applications, 2, pp. 341–361, 1996.

    MathSciNet  MATH  Google Scholar 

  7. Dahmen, W., Wavelet and multiscale methods for operator equations, Acta Numerica, 6, pp. 55–228, Cambridge University Press, 1997.

    Article  MathSciNet  Google Scholar 

  8. Dahmen, W., Kleemann, B., Prößdorf, S. & Schneider, R., A multiscale method for the double layer potential equation on a polyhedron, in: Dikshit, H. P. et al. (ed.), Proceedings of the conference on advances in computational mathematics, held at New Delhi, India, January 5-9, 1993. Singapore: World Scientific. Ser. Approx. Decompos. 4, pp. 15–57, 1994.

    Google Scholar 

  9. Dahmen, W., Kunoth, A., & Urban, K. Biorthogonal spline-wavelets on the interval — stability and moment conditions, Appl. Comp. Harm. Anal. 6, No.2, pp. 132–196, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahmen, W., Prößdorf, S. & Schneider, R., Wavelet approximation methods for pseudo-differential equations I: Stability and convergence, Math. Zeitschr., 215, pp. 583–620, 1994.

    Article  MATH  Google Scholar 

  11. Dahmen, W., Prößdorf, S. & Schneider, R., Wavelet approximation methods for pseudo-differential equations II: Matrix compression and fast solution, Advances in Comp. Math., 1, pp. 259–335, 1993.

    Article  MATH  Google Scholar 

  12. Dahmen, W. & Schneider, R., Composite wavelet bases for operator equations, Math. Comp., 68, pp. 1533–1567, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dahmen, W. & Schneider, R., Wavelets on manifolds I: Construction and Domain Decomposition, to appear in SIAM J. Math. Anal.

    Google Scholar 

  14. Dahmen, W. & Schneider, R., Wavelets with complementary boundary conditions — Function spaces on the cube, Results in Mathematics, 34, pp. 255–293, 1998.

    MathSciNet  MATH  Google Scholar 

  15. Dahmen, W. & Stevenson, R., Element-by element construction of wavelets satisfying stability and moment conditions, to appear in SIAM J. Numer. Anal., 37, pp. 319–325, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  16. Daubechies, I., Ten lectures on wavelets, CBMS Lecture Notes 61, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  17. Ehrich, S. & Rathsfeld, A., Piecewise Linear Wavelet Collocation, Approximation of the Boundary Manifold and Quadrature, to appear.

    Google Scholar 

  18. Junkherr, J., Effiziente Lösung von Gleichungssystemen, die aus der Diskretisierung von schwach singulären Integralgleichungen 1. Art herrühren, Dissertation, Christian-Albrechts-Universität, Kiel, 1994.

    MATH  Google Scholar 

  19. Lorentz, R. & Oswald, P., Constructing economical Riesz bases for Sobolev spaces, GMD-Bericht 993, GMD, Sankt Augustin, 1996.

    Google Scholar 

  20. Rathsfeld, A., A wavelet algorithm for the solution of a singular integral equation over a smooth two-dimensional manifold, J. Integr. Equ. Appl., 10, pp. 445–501, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. Stevenson, R., Stable three-point wavelet bases on general meshes, Numer. Math., 80, pp. 131–158, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to my teacher Professor Siegfried Prößdorf

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Rathsfeld, A. (2001). On a Hierarchical Three-Point Basis in the Space of Piecewise Linear Functions over Smooth Surfaces. In: Elschner, J., Gohberg, I., Silbermann, B. (eds) Problems and Methods in Mathematical Physics. Operator Theory: Advances and Applications, vol 121. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8276-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8276-7_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9500-2

  • Online ISBN: 978-3-0348-8276-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics