Skip to main content

Burgers Turbulence and Dynamical Systems

  • Conference paper
  • 1339 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 201))

Abstract

We discuss a dynamical system approach to a problem of Burgers turbulence. It is shown that there exists a unique stationary distribution for solutions to spatially periodic inviscid random forced Burgers equations in arbitrary dimension. The construction is based on analysis of minimizing orbits for time-dependent random Lagrangians on a d-dimensional torus. We also discuss how dynamical properties of minimizing trajectories lead to quantitative predictions for physically important universal critical exponents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil’s staircase, Physica D, 7, 1983, 240–258.

    Article  MathSciNet  Google Scholar 

  2. S. Boldyrev, Velocity-difference probability density for Burgers turbulence, Phys. Rev. E, 55 (1997), 6907–6910.

    Article  MathSciNet  Google Scholar 

  3. E. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebedev, Intermittency of Burgers turbulence, Phys. Rev. Lett., 78 (1997), 1452–1455.

    Article  Google Scholar 

  4. J. Bec, U. Frisch and K. Khanin, Kicked Burgers Turbulence, J. Fluid Mech., 416 (2000), 239–267.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bricmont, A. Kupiainen and R. Lefevere Ergodicity of the 2D Navier-Stokes equations with random forcing, Preprint (2000).

    Google Scholar 

  6. J. P. Bouchaud, M. Mezard and G. Parisi, Scaling and intermittency in Burgers turbulence, Phys. Rev. E, 52 (1995), 3656–3674.

    Article  MathSciNet  Google Scholar 

  7. G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points, Er-god. Th and Dynam. Sys., 19 (1999), 901–952.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Contreras and R. Iturriaga, Global Minimizers of Autonomous Lagrangians, 22 Colloqio Brasileiro de Matematica, 1999.

    MATH  Google Scholar 

  9. W. E. K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Annals of Math., 151 (2000), 877–960.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. E. K. Khanin, A. Mazel and Ya. Sinai, Probability distribution functions for the random forced Burgers equations, Phys. Rev. Lett. 78 (1997), 1904–1907.

    Article  Google Scholar 

  11. A. Chekhlov and V. Yakhot, Kolmogorov Turbulence in a random force-driven Burgers equation Phys. Rev E, 51 (1995), R2739—R2749.

    Article  MathSciNet  Google Scholar 

  12. W. E and E. Vanden Eijnden, Asymptotic theory for the probability density functions in Burgers turbulence Phys. Rev. Lett., 83 (1999), 2572–2575.

    Article  Google Scholar 

  13. W. E and E. Vanden Eijnden Statistical theory of the stochastic Burgers equation in the inviscid limit, Comm. Pure Appl. Math., 53 (2000), 852–901.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. E, J.C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes Equation, Preprint (2000).

    Google Scholar 

  15. A. Fathi, Théorème KAM faible et Théorie de Mather sur les systems Lagrangiens, C.R. Acad. Sci. Paris, t. 324, Série I (1997), 1043–1046.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Flandoli, B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbation Comm in Math Physics, 171 (1995), 119–141.

    Article  MathSciNet  Google Scholar 

  17. U. Frisch, J. Bec and B. Villone, Singularities and the distribution of density in the Burgers/adhension model, Physica D, 152–153 (1–4) 2001, 620–635.

    Article  MathSciNet  Google Scholar 

  18. T. Gotoh and R. H. Kraichnan, Burgers turbulence with large scale forcing, Phys. Fluids A, 10 (1998), 2859–2866.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Gurarie and A. Migdal, Instantons in Burgers equations, Phys. Rev. E, 54 (1996), 4908–4914.

    Article  Google Scholar 

  20. G. Hedlund Geodesics on a two dimensional Riemannian manifold with periodic coefficients, Annals of Math., 33 (1932), 719–739.

    Article  MathSciNet  Google Scholar 

  21. E. Hopf The partial differrential equation u t + uu x = μ u xx , Comm. Pure Appl. Math., 3 (1950), 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Iturriaga and K. Khanin, Burgers Turbulence and Random Lagrangian Systems, Preprint 2001.

    Google Scholar 

  23. S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures, Preprint (2000).

    Google Scholar 

  24. P. D. Lax, Hyperbolic systems of conservation laws, Comm Pure Appl. Math., 10 (1957), 537–566.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Math., 69 Pitman Advanced Publishing Program, Boston, 1982.

    Google Scholar 

  26. R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9 (1996), 273–310.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, International Congress on Dynamical Systems in Montevideo (a tribute to Ricardo Marié), F. Ledrappier, J. Lewowicz, S. Newhouse eds, Pitman Research Notes in Math., 362 Pitman Advanced Publishing Program, Boston, 1996, 120–131. Reprinted in Bol. Soc. Bras. Mat., Vol 28 (1997), 141–153.

    Google Scholar 

  28. J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus,Topology, 21 (1982), 457–467.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Mather, Action minimizing measures for positive definite Lagrangian systems,Math. Zeitschrift, 207 (1991), 169–207.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Morse, Calculus of variations in the large, Amer. Math. Soc. Colloquium Publications, XVIII, 1934.

    Google Scholar 

  31. O. A. Oleinik, Discontinuous solutions of nonlinear differential equations,Uspekhi Mat. Nauk, 12 (1957), 3–73.

    MathSciNet  Google Scholar 

  32. A. Polyakov, Turbulence without pressure, Phys. Rev E, 52 (1995), 6183–6188.

    Article  MathSciNet  Google Scholar 

  33. Ya. Sinai, Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Stat. Phys., 64 (1992), 1–12.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Iturriaga, R., Khanin, K. (2001). Burgers Turbulence and Dynamical Systems. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds) European Congress of Mathematics. Progress in Mathematics, vol 201. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8268-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8268-2_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9497-5

  • Online ISBN: 978-3-0348-8268-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics