Skip to main content

Heat Kernels on Manifolds, Graphs and Fractals

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 201))

Abstract

We consider heat kernels on different spaces such as Riemannian manifolds, graphs, and abstract metric measure spaces including fractals. The talk is an overview of the relationships between the heat kernel upper and lower bounds and the geometric properties of the underlying space. As an application, some estimate of higher eigenvalues of the Dirichlet problem is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. K. Alexopoulos, A lower estimate for central probabilities on polycyclic groups, Can. J. Math., 44 (1992), no. 5, 897–910.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. T. Barlow, Diffusions on fractals, in: Lectures on Probability Theory and Statistics, Ecole d’été de Probabilités de Saint-Flour XXV — 1995, Lecture Notes Math. 1690, Springer-Verlag, 1998. 1–121.

    Google Scholar 

  3. M. T. Barlow, R. F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math., 54 (1999), 673–744.

    Article  MathSciNet  Google Scholar 

  4. M. T. Barlow, A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Th. Rel. Fields, 79 (1988), 543–623.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Buser, A note on the isoperimetric constant, Ann. Scient. Ec. Norm. Sup., 15 (1982), 213–230.

    MathSciNet  MATH  Google Scholar 

  6. I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984.

    MATH  Google Scholar 

  7. I. Chavel, Isoperimetric inequalities and heat diffusion on Riemannian manifolds, Lecture notes 1999.

    Google Scholar 

  8. I. Chavel, E. A. FeldmanModified isoperimetric constants, and large time heat diffusion in Riemannian manifolds, Duke Math. J., 64 (1991), no. 3, 473–499.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics 92, AMS publications, 1996.

    Google Scholar 

  10. T. Coulhon, Heat kernels on non-compact Riemannian manifolds: a partial survey, Séminaire de théorie spectrale et géométrie, 1996–1997, Institut Fourier, Grenoble, 15 (1998), 167–187.

    Google Scholar 

  11. T. Coulhon, A. Grigor’yan, Ch. Pittet, A geometric approach to on-diagonal heat kernel lower bounds on groups, to appear in Ann. Inst. Fourier

    Google Scholar 

  12. T. Coulhon, L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Revista Matematica Iberoamericana, 9 (1993), no. 2, 293–314.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, 1989.

    Book  MATH  Google Scholar 

  14. E. B. Davies, Spectral theory and differential operators, Cambridge University Press, 1995.

    Book  Google Scholar 

  15. T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Revista Matematica Iberoamericana, 15 no. 1, (1999), 181–232.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, Studies in Mathematics 19, De Gruyter, 1994.

    Book  MATH  Google Scholar 

  17. A. Grigor’yan, The heat equation on non-compact Riemannian manifolds, (in Russian) Matem. Sbornik, 182 (1991), no. 1, 55–87. Engl. transi. Math. USSR Sb., 72 (1992), no. 1, 47–77.

    Google Scholar 

  18. A. Grigor’yan, Heat kernel upper bounds on a complete non-compact manifold, Re-vista Matematica Iberoamericana, 10 (1994), no. 2, 395–452.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Grigor’yan, Heat kernel on a manifold with a local Harnack inequality, Comm Anal. Geom., 2 (1994), no. 1, 111–138.

    MathSciNet  MATH  Google Scholar 

  20. A. Grigor’yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom., 45 (1997), 33–52.

    MathSciNet  Google Scholar 

  21. A. Grigor’yan, Estimates of heat kernels on Riemannian manifolds, in: Spectral Theory and Geometry. ICMS Instructional Conference, Edinburgh 1998, ed. B.Davies and Yu.Safarov, London Math. Soc. Lecture Note Series 273, Cambridge Univ. Press, 1999. 140–225.

    Google Scholar 

  22. A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc., 36 (1999), 135–249.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Grigor’yan, A. Telcs, Harnack inequalities and sub-Gaussian estimates for random walks, preprint.

    Google Scholar 

  24. A. Grigor’yan, A. Telcs, Sub-Gaussian estimates of heat kernels on infinite graphs, to appear in Duke Math. J.

    Google Scholar 

  25. A. Grigor’yan, S.-T. Yau, On isoperimetric properties of higher eigenvalues of elliptic operators, in preparation.

    Google Scholar 

  26. W. Hebisch, L. Saloff Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Prob., 21 (1993), 673–709.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Li, S.-T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm Math. Phys., 88 (1983), 309–318.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), no. 3–4, 153–201.

    Article  MathSciNet  Google Scholar 

  29. V. G. Maz’ya, Sobolev spaces,(in Russian) Izdat. Leningrad Gos. Univ. Leningrad, 1985. Engl. transi. Springer-Verlag, 1985.

    Google Scholar 

  30. Ch. Pittet, L. Saloff-Coste, A survey on the relationship between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, preprint.

    Google Scholar 

  31. D. W. Robinson, Elliptic operators and Lie groups, Oxford Math. Mono., Clarenton Press, Oxford New York Tokyo, 1991.

    Google Scholar 

  32. L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Duke Math J., Internat. Math. Res. Notices, 2 (1992), 27–38.

    Article  MathSciNet  Google Scholar 

  33. L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis, 4 (1995), 429–467.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Schoen, S.-T. Yau, Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology 1, International Press, 1994.

    MATH  Google Scholar 

  35. R. S. Strichartz, Analysis on fractals, Notices of AMS, 46 (1999), no. 10, 1199--1208.

    MathSciNet  MATH  Google Scholar 

  36. D. W. Stroock, Estimates on the heat kernel for the second order divergence form operators, in: Probability theory. Proceedings of the 1989 Singapore Probability Conference held at the National University of Singapore, June 8–16 1989, ed. L.H.Y. Chen, K.P. Choi, K. Hu and J.H. Lou, Walter De Gruyter, 1992. 29–44.

    Google Scholar 

  37. K.-Th. Sturm, Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, Journal de Mathématiques Pures et Appliquées, 75 (1996), no. 3, 273–297.

    MathSciNet  MATH  Google Scholar 

  38. A. Telcs, Random walks on graphs, electric networks and fractals, J. Prob. Theo. and Rel. Fields, 82 (1989), 435–449.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. I. Ushakov, Stabilization of solutions of the third mixed problem for a second order parabolic equation in a non-cylindric domain, (in Russian) Matem. Sbornik, 111 (1980), 95–115. Engl. transl. Math. USSR Sb., 39 (1981), 87–105.

    Google Scholar 

  40. N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  41. W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138, Cambridge Univ. Press., 2000.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Grigor’yan, A. (2001). Heat Kernels on Manifolds, Graphs and Fractals. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds) European Congress of Mathematics. Progress in Mathematics, vol 201. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8268-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8268-2_22

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9497-5

  • Online ISBN: 978-3-0348-8268-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics