Advertisement

Computer Algebra Algorithms for Linear Ordinary Differential and Difference equations

  • Manuel Bronstein
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

Galois theory has now produced algorithms for solving linear ordinary differential and difference equations in closed form. In addition, recent algorithmic advances have made those algorithms effective and implementable in computer algebra systems. After introducing the relevant parts of the theory, we describe the latest algorithms for solving such equations.

Keywords

Difference Equation Linear Differential Equation Galois Group Symbolic Computation Galois Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. A. Abramov, M. Bronstein, and M. Petkovsek. On polynomial solutions of linear operator equations. In Proceedings of ISSAC’95, pages 290–296. ACM Press, 1995.Google Scholar
  2. [2]
    R. Bomboy. Solutions Liouvilliennes des équations aux différences finies linéaires. Thèse de mathématiques, Université de Nice, 2001.Google Scholar
  3. [3]
    D. Boucher. Sur les équations différentielles paramétrées, une application aux systèmes hamiltoniens. Thèse de mathématiques, Université de Limoges, 2000.Google Scholar
  4. [4]
    M. Bronstein. On solutions of linear ordinary differential equations in their coefficient field. J. Symbolic Computation, 13(4):413–440, April 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    M. Bronstein. On solutions of linear ordinary difference equations in their coefficient field. Journal of Symbolic Computation, 29(6):841–877, June 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    M. Bronstein and A. Fredet. Solving linear ordinary differential equations over C(x,of t(x)dx). In S. Dooley, editor, Proceedings of ISSAC’99, pages 173–179. ACM Press, 1999.Google Scholar
  7. [7]
    M. Bronstein, T. Mulders, and J.-A. Weil. On symmetric powers of differential operators. In Proceedings of ISSAC’97, pages 156–163. ACM Press, 1997.Google Scholar
  8. [8]
    M. Bronstein and M. Petkovsek. An introduction to pseudo-linear algebra. Theoretical Computer Science, 157:3–33, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    F. T. Cope. Formal solutions of irregular linear differential equations II, American Journal of Mathematics, 58:130–140, 1936.MathSciNetCrossRefGoogle Scholar
  10. [10]
    P. A. Hendriks and M. F. Singer. Solving difference equations in finite terms. J. Symbolic Computation, 27(3):239–260, March 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    M. van Hoeij. Factorization of differential operators with rational functions coefficients. J. Symbolic Computation, 24(5):537–562, November 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    M. Van Hoeij, J.-F. Ragot, F. Ulmer, and J.-A. Weil. Liouvillian solutions of linear differential equations of order three and higher. J. Symbolic Computation, 28(4 and 5):589–610, October/November 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    M. van Hoeij and J.-A. Weil. An algorithm for computing invariants of differential galois groups. Journal of Pure and Applied Algebra, 117,118:353–379, 1997.MathSciNetCrossRefGoogle Scholar
  14. [14]
    E. L. Ince. Ordinary Differential Equations. Dover Publications Inc., 1956.Google Scholar
  15. [15]
    C. Jordan. Mémoire sur les équations différentielles linéaires à intégrale algébrique. Journal für Mathematik, 84:89–215, 1878.Google Scholar
  16. [16]
    Irving Kaplansky. An introduction to differential algebra. Hermann, Paris, 1957.zbMATHGoogle Scholar
  17. [17]
    E. R. Kolchin. Algebraic matrix groups and the Picard—Vessiot theory of homogeneous linear ordinary differential equations. Annals of Mathematics, 49:1–42, 1948.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    E. R. Kolchin. Differential algebra and algebraic groups. Academic Press, New York and London, 1973.Google Scholar
  19. [19]
    O. Ore. Theory of non-commutative polynomials. Annals of Mathematics, 34:480–508, 1933.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M. Petkovsek. Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symbolic Computation, 14(2 and 3):243–264, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    M. Petkovsek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters, Wellesley, 1996.Google Scholar
  22. [22]
    M. Put. Galois theory of differential equations, algebraic groups and Lie algebras. J. Symbolic Computation, 28(4 and 5):441–472, 1999.zbMATHCrossRefGoogle Scholar
  23. [23]
    A. Seidenberg. Abstract differential algebra and the analytic case. Proceedings of the American Mathematical Society, 9:159–164, 1958.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    A. Seidenberg. Abstract differential algebra and the analytic case II. Proceedings of the American Mathematical Society, 23:689–691, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    M. F. Singer. Liouvillian solutions of nth order homogeneous linear differential equations. American Journal of Mathematics, 103:661–682, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    M. F. Singer. Liouvillian solution of linear differential equations with Liouvillian coefficients. J. Symbolic Computation, 11(3):251–274, March 1991.zbMATHCrossRefGoogle Scholar
  27. [27]
    M. F. Singer. Testing reducibility of linear differential operators: a group theoretic perspective. Applicable Algebra in Engineering, Communication and Computing, 7:77–104, 1996.zbMATHGoogle Scholar
  28. [28]
    M. F. Singer and F. Ulmer. Liouvillian and algebraic solutions of second and third order linear differential equations. J. Symbolic Computation, 16(1):37–74, July 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    M. F. Singer and F. Ulmer. Linear differential equations and products of linear forms. Journal of Pure and Applied Algebra, 117 Si 118:549–563, 1997.MathSciNetCrossRefGoogle Scholar
  30. [30]
    M. F. Singer and M. Put. Galois Theory of Difference Equations. LNM 1666. Springer, 1997.Google Scholar
  31. [31]
    F. Ulmer. On Liouvillian solutions of linear differential equations. Applicable Algebra in Engineering, Communication and Computing, 2:171–193, 1992.MathSciNetzbMATHGoogle Scholar
  32. [32]
    F. Ulmer. Irreducible linear differential equations of prime order. J. Symbolic Computation, 18(4):385–401, October 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    F. Ulmer and J.-A. Weil. Note on Kovacic’s algorithm. J. Symbolic Computation, 22(2):179–200, August 1996.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Manuel Bronstein
    • 1
  1. 1.INRIASophia, Antipolis CedexFrance

Personalised recommendations