Skip to main content

The Fine Geometry of the Cantor Families of Invariant Tori in Hamiltonian Systems

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 202))

Abstract

This work focuses on the dynamics around a partially elliptic, lower dimensional torus of a real analytic Hamiltonian system. More concretely, we investigate the abundance of invariant tori in the directions of the phase space corresponding to elliptic modes of the torus. Under suitable (but generic) non-degeneracy and non-resonance conditions, we show that there exist plenty of invariant tori in these elliptic directions, and that these tori are organized in manifolds that can be parametrized on suitable Cantor sets. These manifolds can be seen as “Cantor centre manifolds”, obtained as the nonlinear continuation of any combination of elliptic linear modes of the torus. Moreover, for each family, the density of the complementary of the set filled up by these tori is exponentially small with respect to the distance to the initial torus. These results are valid in the limit cases when the initial torus is an equilibrium point or a maximal dimensional torus. It is remarkable that, in the case in which the initial torus is totally elliptic, we can derive Nekhoroshev-like estimates for the diffusion time around the torus. Due to the use of weaker non-resonance conditions, these results are an improvement on previous results [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold. Proof of A. N. Kolmogorov’s theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Russian Math. Surveys, 18(5):9–36, 1963.

    Article  Google Scholar 

  2. J. Bourgain. On Melnikov’s persistency problem. Math. Res. Lett., 4(4):445–458, 1997.

    MathSciNet  MATH  Google Scholar 

  3. H. W. Broer, G. B. Huitema, and M. B. Sevryuk. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos, volume 1645 of Lecture Notes in Math. Springer-Verlag, New York, 1996.

    Google Scholar 

  4. L. H. Eliasson. Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Super. Pisa, Cl. Sci., 15(1):115–147, 1988.

    MathSciNet  MATH  Google Scholar 

  5. S. Graff. On the conservation of hyperbolic invariant tori for Hamiltonian systems. J. Differential Equations,15(1):1–69, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Jorba and C. Simo. On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differential Equations,98:111–124, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Jorba and J. Villanueva. On the normal behaviour of partially elliptic lower dimensional tori of Hamiltonian systems. Nonlinearity, 10:783–822, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Jorba and J. Villanueva. On the persistence of lower dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci., 7:427–473, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Jorba and J. Villanueva. On the density of quasi-periodic motions around a partially elliptic lower dimensional torus. In preparation.

    Google Scholar 

  10. A. N. Kolmogorov. On the persistence of conditionally periodic motions under a small change of the Hamilton function. Dokl. Acad. Nauk. SSSR,98(4):527–530, 1954.

    MathSciNet  MATH  Google Scholar 

  11. V. K. Melnikov. On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function. Soviet Math. Dokl., 6:1592–1596, 1965.

    Google Scholar 

  12. A. Morbidelli and A. Giorgilli. Superexponential stability of KAM tori. J. Statist. Phys., 78(5–6):1607–1617, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann., 169:136–176, 1967.

    MATH  Google Scholar 

  14. N. N. Nekhoroshev. An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Math. Surveys,32:1–65, 1977.

    Article  MATH  Google Scholar 

  15. L. Niederman. Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system. Nonlinearity, 11(5):1465–1479, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. D. Perry and S. Wiggins. KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow. Phys. D, 71:102–121, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Poschel. On elliptic lower dimensional tori in Hamiltonian systems. Math. Z., 202(4):559–608, 1989.

    Article  MathSciNet  Google Scholar 

  18. H. Russmann. Non-degeneracy in the perturbation theory of integrable dynamical systems. In Number theory and dynamical systems, volume 134 of Lond. Math. Soc. Lect. Note Ser., pages 5–18. 1989.

    Google Scholar 

  19. M. B. Sevryuk. Invariant tori of hamiltonian systems that are nondegenerate in Rüssman’s sense. Dokl. Akad. Nauk, Ross. Akad. Nauk, 346(5):590–593, 1996.

    MathSciNet  Google Scholar 

  20. M. B. Sevryuk. Excitation of elliptic normal modes of invariant tori in Hamiltonian systems. In A. G. Khovanskii, A. N. Varchenko, and V. A. Vassiliev, editors, Topics in Singularity Theory. V. I. Arnold’s 60th Anniversary Collection, volume 180 of American Mathematical Society Translations-Series 2, Advances in the Mathematical Sciences, pages 209–218. American Mathematical Society, Providence, Rhode Island, 1997.

    Google Scholar 

  21. M. B. Sevryuk. Invariant tori of intermediate dimensions in Hamiltonian systems. Regul. Chaotic Dyn., 3(1):39–48, 1998.

    MathSciNet  MATH  Google Scholar 

  22. [] M. B. Sevryuk. The lack-of-parameters problem in the KAM theory revisited. In C. Simó, editor, Hamiltonian Systems with Three or More Degrees of Freedom, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 568–572. Held in S’Agaró, Spain, 19–30 June 1995. Kluwer Acad. Publ., Dordrecht, Holland, 1999.

    Chapter  Google Scholar 

  23. H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36(1):63–89, 1934.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Jorba, A., Villanueva, J. (2001). The Fine Geometry of the Cantor Families of Invariant Tori in Hamiltonian Systems. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds) European Congress of Mathematics. Progress in Mathematics, vol 202. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8266-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8266-8_48

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9496-8

  • Online ISBN: 978-3-0348-8266-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics