Advertisement

The Fine Geometry of the Cantor Families of Invariant Tori in Hamiltonian Systems

  • Angel Jorba
  • Jordi Villanueva
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

This work focuses on the dynamics around a partially elliptic, lower dimensional torus of a real analytic Hamiltonian system. More concretely, we investigate the abundance of invariant tori in the directions of the phase space corresponding to elliptic modes of the torus. Under suitable (but generic) non-degeneracy and non-resonance conditions, we show that there exist plenty of invariant tori in these elliptic directions, and that these tori are organized in manifolds that can be parametrized on suitable Cantor sets. These manifolds can be seen as “Cantor centre manifolds”, obtained as the nonlinear continuation of any combination of elliptic linear modes of the torus. Moreover, for each family, the density of the complementary of the set filled up by these tori is exponentially small with respect to the distance to the initial torus. These results are valid in the limit cases when the initial torus is an equilibrium point or a maximal dimensional torus. It is remarkable that, in the case in which the initial torus is totally elliptic, we can derive Nekhoroshev-like estimates for the diffusion time around the torus. Due to the use of weaker non-resonance conditions, these results are an improvement on previous results [7].

Keywords

Normal Form Hamiltonian System Invariant Torus Dimensional Torus Small Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold. Proof of A. N. Kolmogorov’s theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Russian Math. Surveys, 18(5):9–36, 1963.CrossRefGoogle Scholar
  2. 2.
    J. Bourgain. On Melnikov’s persistency problem. Math. Res. Lett., 4(4):445–458, 1997.MathSciNetzbMATHGoogle Scholar
  3. 3.
    H. W. Broer, G. B. Huitema, and M. B. Sevryuk. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos, volume 1645 of Lecture Notes in Math. Springer-Verlag, New York, 1996.Google Scholar
  4. 4.
    L. H. Eliasson. Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Super. Pisa, Cl. Sci., 15(1):115–147, 1988.MathSciNetzbMATHGoogle Scholar
  5. 5.
    S. Graff. On the conservation of hyperbolic invariant tori for Hamiltonian systems. J. Differential Equations,15(1):1–69, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Jorba and C. Simo. On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differential Equations,98:111–124, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Jorba and J. Villanueva. On the normal behaviour of partially elliptic lower dimensional tori of Hamiltonian systems. Nonlinearity, 10:783–822, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A. Jorba and J. Villanueva. On the persistence of lower dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci., 7:427–473, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Jorba and J. Villanueva. On the density of quasi-periodic motions around a partially elliptic lower dimensional torus. In preparation.Google Scholar
  10. 10.
    A. N. Kolmogorov. On the persistence of conditionally periodic motions under a small change of the Hamilton function. Dokl. Acad. Nauk. SSSR,98(4):527–530, 1954.MathSciNetzbMATHGoogle Scholar
  11. 11.
    V. K. Melnikov. On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function. Soviet Math. Dokl., 6:1592–1596, 1965.Google Scholar
  12. 12.
    A. Morbidelli and A. Giorgilli. Superexponential stability of KAM tori. J. Statist. Phys., 78(5–6):1607–1617, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann., 169:136–176, 1967.zbMATHGoogle Scholar
  14. 14.
    N. N. Nekhoroshev. An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Math. Surveys,32:1–65, 1977.zbMATHCrossRefGoogle Scholar
  15. 15.
    L. Niederman. Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system. Nonlinearity, 11(5):1465–1479, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. D. Perry and S. Wiggins. KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow. Phys. D, 71:102–121, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    J. Poschel. On elliptic lower dimensional tori in Hamiltonian systems. Math. Z., 202(4):559–608, 1989.MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Russmann. Non-degeneracy in the perturbation theory of integrable dynamical systems. In Number theory and dynamical systems, volume 134 of Lond. Math. Soc. Lect. Note Ser., pages 5–18. 1989.Google Scholar
  19. 19.
    M. B. Sevryuk. Invariant tori of hamiltonian systems that are nondegenerate in Rüssman’s sense. Dokl. Akad. Nauk, Ross. Akad. Nauk, 346(5):590–593, 1996.MathSciNetGoogle Scholar
  20. 20.
    M. B. Sevryuk. Excitation of elliptic normal modes of invariant tori in Hamiltonian systems. In A. G. Khovanskii, A. N. Varchenko, and V. A. Vassiliev, editors, Topics in Singularity Theory. V. I. Arnold’s 60th Anniversary Collection, volume 180 of American Mathematical Society Translations-Series 2, Advances in the Mathematical Sciences, pages 209–218. American Mathematical Society, Providence, Rhode Island, 1997.Google Scholar
  21. 21.
    M. B. Sevryuk. Invariant tori of intermediate dimensions in Hamiltonian systems. Regul. Chaotic Dyn., 3(1):39–48, 1998.MathSciNetzbMATHGoogle Scholar
  22. 22.
    [] M. B. Sevryuk. The lack-of-parameters problem in the KAM theory revisited. In C. Simó, editor, Hamiltonian Systems with Three or More Degrees of Freedom, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 568–572. Held in S’Agaró, Spain, 19–30 June 1995. Kluwer Acad. Publ., Dordrecht, Holland, 1999.CrossRefGoogle Scholar
  23. 23.
    H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36(1):63–89, 1934.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Angel Jorba
    • 1
  • Jordi Villanueva
    • 2
  1. 1.Departament de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Matemàtica Aplicada IUniversitat Politécnica de CatalunyaBarcelonaSpain

Personalised recommendations