Advertisement

From Quiver Diagrams to Particle Physics

  • Angel M. Uranga
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

Recent scenarios of phenomenologically realistic string compactifications involve the existence of gauge sectors localized on D-branes at singular points of Calabi¡ªYau threefolds. The spectrum and interactions in these gauge sectors are determined by the local geometry of the singularity, and can be encoded in quiver diagrams. We discuss the physical models arising for the simplest case of orbifold singularities, and generalize to non-orbifold singularities and orientifold singularities (a generalization naturally arising in string theory). Finally we show that relatively simple singularities lead to gauge sectors surprisingly close to the standard model of elementary particles.

Keywords

Modulus Space Gauge Group Vector Multiplet Chiral Multiplet Gauge Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Beasley, B. R. Greene, C. I. Lazaroiu, M. R. PlesserD3-branes on partial resolutions of abelian quotient singularities of Calabi-Yau threefoldsNucl.Phys. B566 (2000) 599–6.Google Scholar
  2. 2.
    J. D. Blum, K. IntriligatorNew phases of string theory and 6-D RG fixed points via branes at orbifold singularitiesNucl. Phys. B506 (1997) 199–22; J. Park, A. M. Uranga, A Note on superconformal N=2 theories and orientifoldsNucl. Phys. B542 (1999) 139–15.Google Scholar
  3. 3.
    K. Dasgupta, S. MukhiBrane constructions conifolds and M theoryNucl. Phys. B551 (1999) 204–22.Google Scholar
  4. 4.
    M. R. Douglas, B. R. Greene, D. R. MorrisonOrbifold resolution by D-branesNucl. Phys. B506 (1997) 84–10.MathSciNetGoogle Scholar
  5. 5.
    M. R. Douglas, G. MooreD-branes quivers and ALE instantons hep-th/9603167.Google Scholar
  6. 6.
    B. Feng, A. Hanany, Y.-H. HeD-brane gauge theories from toric singularities and tonic duality,hep-th/0003085. Google Scholar
  7. 7.
    E. G. Gimon, J. PolchinskiConsistency conditions for orientifolds and d manifoldsPhys. Rev. D54 (1996) 1667; E. G. Gimon, C. V. JohnsonK3 orientifoldsNucl.Phys. B477 (1996) 715; A. Dabholkar, J. ParkStrings on orientifoldsNucl. Phys. B477 (1996) 701.MathSciNetGoogle Scholar
  8. 8.
    L. E. Ibüñez, R. Rabadün, A. M. UrangaAnomalous U(1)’s in type I and type IIB D =4N=1 string vacua, Nucl. Phys. B542 (1999) 112–13.Google Scholar
  9. 9.
    C. V. Johnson, R. C. MyersAspects of type IIB theory on ALE spacesPhys. Rev. D55 (1997) 6382.Google Scholar
  10. 10.
    I. R. Klebanov, E. WittenSuperconformal field theory on three-branes at a CalabiYau singularityNucl. Phys. B536 (1998) 199–21.Google Scholar
  11. 11.
    P. B. KronheimerThe construction of ALE spaces as hyper-Kähler quotientsJ. Diff. Geom. 29 (1989) 665.MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. Lawrence, N. Nekrasov, C. VafaOn conformal field theories in four-dimensionsNucl. Phys. B533 (1998) 199–20.MathSciNetGoogle Scholar
  13. 13.
    R. G. Leigh, M. RozaliBrave boxes anomalies,bending and tadpolesPhys. Rev. D59 (1999) 026004.MathSciNetGoogle Scholar
  14. 14.
    J. Lykken, E. Poppitz, S. P. TrivediBranes with GUTs and supersymmetry breakingNucl. Phys. B543 (1999) 105.MathSciNetGoogle Scholar
  15. 15.
    J. McKayGraphs singularities and finite groups Proc. Symp. Pure Math. 37 (1980) 183; M. ReidMcKay correspondence alg-geom/9702016.Google Scholar
  16. 16.
    D. R. Morrison, M. R. PlesserNonspherical horizonsAdv. Theor. Math. Phys. 3 (1999) 1–8.zbMATHGoogle Scholar
  17. 17.
    J. Park, R. Rabadün, A. M. UrangaOrientifolding the conifoldhep-th/9907086.Google Scholar
  18. 18.
    J. PolchinskiTASI lectures on D-braneshep-th/9611050.Google Scholar
  19. 19.
    A. Sagnotti in Cargese’87Non-perturbative quantum field theory, ed. G. Mack et al(Pergamon Press 1988), pag. 521 Some properties of open string theories. Google Scholar
  20. 20.
    A. V. Sardo InfirriResolutions of orbifold singularities and the transportation problem on the McKay quiveralg-geom/9610005.Google Scholar
  21. 21.
    R. von UngeBranes at generalized conifolds and toric geometryJ. High E. Phys. 9902 (1999) 023; K. Oh, R. TatarBranes at orbifolded conifold singularities and supersymmetric gauge field theories,J. High E. Phys. 9910 (1999) 031.Google Scholar
  22. 22.
    A. M. UrangaBrane configurations for branes at conifoldsJ. High Energy Phys. 9901(1999)022.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Angel M. Uranga
    • 1
  1. 1.Theory DivisionC.E.R.N.Geneve 23Switzerland

Personalised recommendations