Skip to main content

Knot Invariants and Chern-Simons Theory

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 202))

  • 1164 Accesses

Abstract

A brief review of the development of Chern-Simons gauge theory since its relation to knot theory was discovered in 1988 is presented. The presentation is done guided by a dictionary which relates knot theory concepts to quantum field theory ones. From the basic objects in both contexts the quantities leading to knot and link invariants are introduced and analysed. The quantum field theory approaches that have been developed to compute these quantities are reviewed. Perturbative approaches lead to Vassiliev or finite type invariants. Non-perturbative ones lead to polynomial or quantum group invariants. In addition, a brief discussion on open problems and future developments is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Altschuler and L. Friedel, `Vassiliev knot invariants and Chern-Simons perturbation theory to all orders,“ Commun. Math. Phys. 187 (1997) 261, and `On universal Vassiliev invariants,” 170 (1995) 41.

    MathSciNet  MATH  Google Scholar 

  2. M. Alvarez and J. M. F. Labastida, “Analysis of observables in Chern-Simons perturbation theory,” Nucl. Phys. B395 (1993) 198, hep-th/9110069, and `Numerical knot invariants of finite type from Chern-Simons gauge theory,“ B433 (1995) 555, hep-th/9407076; Erratum, ibid. B441 (1995) 403.

    MathSciNet  Google Scholar 

  3. M. Alvarez and J. M. F. Labastida, “Vassiliev invariants for torus knots,” Journal of Knot Theory and its Ramifications 5 (1996) 779; q-alg/9506009.

    Google Scholar 

  4. M. Alvarez and J. M. F. Labastida, “Primitive Vassiliev invariants and factorization in Chern-Simons gauge theory,” Commun. Math. Phys. 189 (1997) 641, qalg/9604010.

    Google Scholar 

  5. Y. Akutsu and M. Wadati, “Exactly solvable models and knot theory,” Phys. Rep. 180 (1989) 247.

    Article  MathSciNet  Google Scholar 

  6. D. Bar-Natan “On the Vassiliev knot invariants,”Topology34 (1995) 423.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Bar-Natan “Perturbative aspects of Chern-Simons topological quantum field theory”, Ph.D. Thesis, Princeton University, 1991.

    Google Scholar 

  8. J. S. Birman, “New points of view in knot theory,” Bull. AMS 28 (1993) 253.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. S. Birman and X. S. Lin, “Knot polynomials and Vassiliev’s invariants,” Invent. Math. 111 (1993) 225.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Bott and C. Taubes, “On the self-linking of knots,” Jour. Math. Phys. 35 (1994) 5247.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. S. Cattaneo, P. Cotta-Ramusino, J. Frohlich and M. Martellini, “Topological BF theories in three-dimensions and four-dimensions,” J. Math. Phys. 36 (1995) 6137.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet and A. Ocneanu, “A new polynomial invariant of knots and links,” Bull. AMS 12 (1985) 239.

    Article  MATH  Google Scholar 

  13. M. Goussarov, M. Polyak and O. Viro, “Finite Type Invariants of Classical and Virtual Knots”, preprint, 1998, math.GT/9810073.

    Google Scholar 

  14. E. Guadagnini, M. Martellini and M. Mintchev, `Perturbative aspects of the ChernSimons field theory,“ Phys. Lett. B227(1989) 111; ”Chern-Simons model and new relations between the HOMFLY coefficients,“ B228 (1989) 489, and ”Wilson lines in Chern-Simons theory and link invariants,“ Nucl. Phys. B330 (1990) 575.

    Article  MathSciNet  Google Scholar 

  15. A. C. Hirshfeld and U. Sassenberg “Derivation of the total twist from Chern-Simons theory,”Journal of Knot Theory and its Ramifications5(1996) 489 and “Explicit formulation of a third order finite knot invariant derived from Chern-Simons theory,” 5(1996) 805

    MathSciNet  MATH  Google Scholar 

  16. V. F. R. Jones, “Hecke algebras representations of braid groups and link polynomials,” Ann. of Math. 126 (1987) 335.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Kassel, M. Rosso and V. Turaev “Quantum groups and knot invariants”, Panoramas et syntheses 5, Societe Mathematique de France, 1997.

    Google Scholar 

  18. C. Kassel and V. Turaev, “Chord diagram invariants of tangles and graphs,” Duke Math. J. 92 (1998) 497–552.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Kauffman, “Witten’s Integral and Kontsevich Integral”, Particles, Fields and Gravitation, Lodz, Poland 1998, Ed. Jakub Rembieliski; AIP Proceedings 453 (1998), 368.

    Google Scholar 

  20. L. H. Kauffman, “An invariant of regular isotopy,” Trans. Am. Math. Soc. 318 (1990) 417.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kontsevich, “Vassiliev’s knot invariants,” Advances in Soviet Math. 16, Part 2 (1993) 137.

    MathSciNet  Google Scholar 

  22. J. M. F. Labastida, “Chern-Simons Gauge Theory: Ten Years After”, Trends in Theoretical Physics II, H. Falomir, R. Gamboa, F. Schaposnik, eds., American Institute of Physics, New York, 1999, CP 484, 1–41, hep-th/9905057.

    Google Scholar 

  23. J. M. F. Labastida and E. Pérez, “Kontsevich integral for Vassiliev invariants from Chern-Simons perturbation theory in the light-cone gauge,” J. Math. Phys. 39 (1998) 5183; hep-th/9710176.

    Google Scholar 

  24. J. M. F. Labastida and E. Pérez, “Gauge-invariant operators for singular knots in Chern-Simons gauge theory,” Nucl. Phys. B527 (1998) 499, hep-th/9712139.

    Google Scholar 

  25. J. M. F. Labastida and E. Pérez, “Combinatorial Formulae for Vassiliev Invariants from Chern-Simons Perturbation Theory”, J. Math. Phys. 41 (2000), 2658–2699.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. M. F. Labastida and E. Pérez, “Vassiliev Invariants in the Context of ChernSimons Gauge Theory”, Santiago de Compostela preprint, US-FT-18/98; hepth/9812105.

    Google Scholar 

  27. G. Leibbrandt, “Introduction to noncovariant gauges,” Rev. Mod. Phys. 59 (1987) 1067.

    Article  MathSciNet  Google Scholar 

  28. M. Polyak and O. Viro, “Gauss diagram formulas for Vassiliev invariants,” Int. Math. Res. Notices 11 (1994) 445.

    Article  MathSciNet  Google Scholar 

  29. H. Ooguri and C. Vafa, “Knot Invariants and Topological Strings”, Harvard preprint, HUTP-99/A070, hep-th/9912123.

    Google Scholar 

  30. D. Thurston, “Integral expressions for the Vassiliev knot Invariants”, Harvard University senior thesis, April 1995; math/9901110.

    Google Scholar 

  31. V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Advances in Soviet Mathematics, vol. 1,Arvericam Math. Soc., Providence, RI, 1990, 23–69.

    Google Scholar 

  32. J. F. W. H. van de Wetering, “Knot invariants and universal R-matrices from perturbative Chern-Simons theory in the almost axial gauge,” Nucl. Phys. B379 (1992) 172.

    Article  MathSciNet  Google Scholar 

  33. S. Willerton, “On Universal Vassiliev Invariants, Cabling, and Torus Knots”, University of Melbourne preprint (1998).

    Google Scholar 

  34. E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys. 121 (1989) 351.

    Article  MathSciNet  MATH  Google Scholar 

  35. S.-W. Yang, “Feynman integral, knot invariant and degree theory of maps”, National Taiwan University preprint, September 1997; q-alg/9709029.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Labastida, J.M.F. (2001). Knot Invariants and Chern-Simons Theory. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds) European Congress of Mathematics. Progress in Mathematics, vol 202. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8266-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8266-8_40

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9496-8

  • Online ISBN: 978-3-0348-8266-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics