Advertisement

Trace Formulas and Spectral Statistics of Diffractive Systems

  • Eugene Bogomolny
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

Diffractive systems are quantum-mechanical models with point-like singularities where usual semiclassical approximation breaks down. An overview of recent investigations of such systems is presented. The following examples are considered in detail: (i) billiards (both integrable and chaotic) with small-size scatterers, (ii) pseudo-integrable polygonal plane billiards, and (iii) billiards with the Bohr-Aharonov flux lines. First, the diffractive trace formulas are discussed with particular emphasis on models where the diffractive coefficient diverges in certain directions. Second, it is demonstrated that the spectral statistics of diffractive models are different from the statistics of both integrable and chaotic systems. The main part of the lecture is devoted to analytical calculations of spectral statistics for certain diffractive models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).Google Scholar
  2. 2.
    S. Albeveris et al. Solvable models in quantum mechanics (Springer-Verlag, New York, 1988).CrossRefGoogle Scholar
  3. 3.
    I. L. Aleiner and K. A. Matveev, Phys. Rev. Lett. 80, 814 (1998).Google Scholar
  4. 4.
    M. V. Berry and M. Tabor, J. Phys. A: Math. Gen. 10, 371 (1977).Google Scholar
  5. 5.
    M. V. Berry, Proc. R. Soc. Lond. A 400, 229 (1985).Google Scholar
  6. 6.
    E. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E 63, 036–206 (2001).Google Scholar
  7. 7.
    E. Bogomolny, U. Gerland, and C. Schmit, Eor. Phys. J. 19, 121 (2001).Google Scholar
  8. 8.
    E. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E 59 R1315 (1999).Google Scholar
  9. 9.
    E. Bogomolny, Nonlinearity 13 947 (2000).Google Scholar
  10. 10.
    E. Bogomolny, O. Giraud, and C. Schmit, Trace formulas for conductance fluctuations (2000), unpublished.Google Scholar
  11. 11.
    E. Bogomolny, N. Pavloff, and C. Schmit, Phys. Rev. E 61 3689 (2000).Google Scholar
  12. 12.
    E. Bogomolny and O. Giraud, (2000) unpublished.Google Scholar
  13. 13.
    E. Bogomolny, P. Leboeuf, and C. Schmit, Phys. Rev. Lett. 85 2486 (2000).Google Scholar
  14. 14.
    A. Bohr and B. R. Mottelson, Nuclear Structure Vol. I, 302 (W.A. Benjamin, New York, 1969)Google Scholar
  15. 15.
    H. Bruus and N. D. Whelan, Nonlinearity 9 1023 (1996).Google Scholar
  16. 16.
    M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990).zbMATHGoogle Scholar
  17. 17.
    J. B. Keller, J. Opt. Soc. Am. 52 116 (1962).Google Scholar
  18. 18.
    M. L. Mehta, Random Matrix Theory (Springer-Verlag, New York, 1990).Google Scholar
  19. 19.
    N. Pavloff and C. Schmit, Phys. Rev. Lett. 75 61 (1995); 75 3779(E) (1995).Google Scholar
  20. 20.
    P. J. Richens and M.V. Berry, Physica D 2 485 (1981).Google Scholar
  21. 21.
    P. Seba, Phys. Rev. Lett. 64 1855 (1990).Google Scholar
  22. [22] A. Shudo and Y. Shimizu, Phys. Rev. E 47 54 (1993).Google Scholar
  23. 23.
    M. Sieber, N. Pavloff, and C. Schmit, Phys. Rev. E 55 2279 (1997).Google Scholar
  24. 24.
    M. Sieber, Phys. Rev. E 60 3982 (1999).Google Scholar
  25. 25.
    M. Sieber, J. Phys. A. 32 7679 (1999).Google Scholar
  26. 26.
    A. Sommerfeld, Optics (Academic Press, New York, 1954).zbMATHGoogle Scholar
  27. 27.
    G. Vattay, A. Wirzba, and P. E. Rosenqvist, Phys. Rev. Lett. 73 2304 (1994).Google Scholar
  28. 28.
    W. A. Veech, Invent. Math. 97 553 (1989); Geom. Funt. Anal. 2 341 (1992).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Eugene Bogomolny
    • 1
  1. 1.Laboratoire de Physique Théorique et Modelés StatistiquesUniversité de Paris XIOrsay CedexFrance

Personalised recommendations