Skip to main content

Risk Sensitive Control with Applications to Fixed Income Portfolio Management

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 202))

Abstract

This paper presents an application of risk sensitive control theory in financial decision making. Specifically, we develop optimal, risk-sensitive investment strategies for a long-term investor who is interested in optimal allocation of her/his capital between cash, equities and fixed income instruments. The long-term fixed income instruments used are so-called rolling-horizon bonds. In order to construct the optimal risk-sensitive control policies relevant for the present application we advance the risk sensitive control theory developed in our previous papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Bajeux-besnainou, j. V. Jordan and r. Portait, (1999), “Dynamic Allocation of Stocks, Bonds and Cash for Long Horizons,” working paper.

    Google Scholar 

  2. T. R. Bielecki and S. R. Pliska, (1999), “Risk Sensitive Dynamic Asset Management,” Appl. Math. Optim., vol. 39, pp. 337–360.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. R. Bielecki, D. Hernandez-Hernandez and S. R. Pliska, (1999), “Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management,” Math. Meth. Oper. Res., vol. 50, pp. 167–188.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. R. Bielecki and S. R. Pliska, (2000), “Risk-sensitive dynamic asset management in the presence of transaction costs,” Finance and Stochastics, vol. 4, pp. 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. R. Bielecki, S. R. Pliska and M. Sherris (1998), “Risk Sensitive Asset Allocation,” Journal of Economic Dynamics and Control, to appear.

    Google Scholar 

  6. M. J. Brennan, E. S. Schwartz and R. Lagnado, (1997) “Strategic asset allocation,” J. Economic Dynamics and Control, vol. 21, pp. 1377–1403.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. J. Brennan and E. S. Schwartz, (1996), “The use of treasury bill futures in strategic asset allocation programs,” In World-Wide Asset and Liability Modeling, J. M. Mulvey and W. T. Ziemba, eds. Cambridge University Press.

    Google Scholar 

  8. E. Canestrelli, (1998), “Applications of Multidimensional Stochastic Processes to Financial Investments,” preprint, Dipartimento di Matematica Applicata ed Informatisa, Universita “Ca’ Foscari” di Venezia.

    Google Scholar 

  9. E. Canestrelli and S. Pontini, (1998), “Inquires on the Applications of Multidimensional Stochastic Processes to Financial Investments,” preprint,Dipartimento di Matematica Applicata ed Informatica, Universita “Ca’ Foscari” di Venezia.

    Google Scholar 

  10. D. Duffle and R. Kan, (1996), “A yield-factor model of interest rates,” Math. Finance, vol. 6, pp. 379–406.

    Article  Google Scholar 

  11. W. H. Fleming and S. J. Sheu, (1998), “Optimal long term growth rate of expected utility of wealth,” preprint, Brown University.

    Google Scholar 

  12. W. H. Fleming and S. J. Sheu, (2000), “Risk Sensitive Control and an Optimal Investment Model,” Mathematical Finance, forthcoming.

    Google Scholar 

  13. D. Heath, R. Jarrow and A. Morton, (1992), “Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation,” Econometrica,vol. 60, pp. 77–105.

    Article  MATH  Google Scholar 

  14. I. Karatzas and S. G. Kou, (1996), “On the pricing of contingent claims under constraints,” Annals of Applied Probability, vol. 6, pp. 321–369.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Karatzas and S. E. Shreve, (1988), “Brownian Motion and Stochastic Calculus,” Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  16. [] I. Karatzas and S. E. Shreve, (1998), “Methods of Mathematical Finance,” Springer-Verlag, New York.

    MATH  Google Scholar 

  17. T. S. Kim and E. Omberg, (1996), “Dynamic Non-myopic Portfolio Behavior,” The Review of Financial Studies, vol. 9, pp. 141–161.

    Google Scholar 

  18. R. Korn, (1997), “Optimal Portfolios. Stochastic Models for Optimal Investment and Risk Management in Continuous Time,” World Scientific, Singapore.

    Book  Google Scholar 

  19. R. C. Merton, (1971), “Optimum consumption and portfolio rules in a continuous time model,” J. Econ. Th. vol. 3, pp. 373–413.

    Article  MathSciNet  Google Scholar 

  20. R. C. Merton, (1973), “An intertemporal capital asset pricing model,” Econometrica vol. 41, pp. 866–887.

    Article  MathSciNet  Google Scholar 

  21. R. C. Merton, (1990), “Continuous-Time Finance,” Basil Blackwell, Cambridge.

    Google Scholar 

  22. M. H. Pesaran and A Timmermann, (1995), “Predictability of stock returns: robustness and economic significance,” J. Finance, vol. 50, pp. 1201–1228.

    Article  Google Scholar 

  23. M. H. Pesaran and A. Timmermann, (1998), “A recursive modelling approach to predicting UK stock returns,” working paper, Trinity College, Cambridge.

    Google Scholar 

  24. S. R. Pliska, (1982), “A discrete time stochastic decision model,” in Advances in Filtering and Optimal Stochastic Control, eds. W. H. Fleming and L. G. Gorostiza, Lecture Notes in Control and Information Sciences 42, Springer Verlag, New York, pp. 290–304.

    Google Scholar 

  25. S. R. Pliska, (1986), “A stochastic calculus model of continuous trading: optimal portfolios,” Math. Operations Research, vol. 11, pp. 371–384.

    Article  MathSciNet  Google Scholar 

  26. M. Rutkowski, (1997), “Self-financing Trading Strategies for Sliding, Rolling-horizon, and Consol Bonds,” Mathematical Finance vol. 9, pp. 361–385.

    Article  MathSciNet  Google Scholar 

  27. C. Sorensen, (1999), “Dynamic Asset Allocation and Fixed Income Manegement,” Journal of Financial and Quantitative Analysis, forthcoming.

    Google Scholar 

  28. O. A. Vasicek, (1977), “An Equilibrium Characterization of the Term Structure,” Journal of Financial Economics vol. 5, pp. 177–188.

    Google Scholar 

  29. W. M. Wonham, (1979), “Linear Multivariable Control: a Geometric Approach,” Springer-Verlag, New York.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Bielecki, T.R., Pliska, S.R. (2001). Risk Sensitive Control with Applications to Fixed Income Portfolio Management. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds) European Congress of Mathematics. Progress in Mathematics, vol 202. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8266-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8266-8_29

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9496-8

  • Online ISBN: 978-3-0348-8266-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics