Advertisement

A Free Boundary Problem: Contributions from Modern Analysis

  • José Miguel Urbano
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

We exemplify the role of Free Boundary Problems as an important source of ideas in modern analysis. With the help of a model problem we illustrate the use of analytical, algebraic and geometrical techniques obtaining uniqueness of weak solutions via the use of entropy inequalities, existence through nonlinear semigroup theory, and regularity using a method, called intrinsic scaling, based on interpreting a partial differential equation in a geometry dictated by its own structure.

Keywords

Weak Solution Mild Solution Free Boundary Problem Entropy Solution Entropy Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311–341.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ph. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems, Adv. Diff. Eqs., 1 (1996), 1053–1073.zbMATHGoogle Scholar
  3. 3.
    H. Brézis and F. Browder, Partial differential equations in the 20th century, Adv. Math., 135 (1998), no. 1, 76–144.MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rat. Mech. Anal, 147 (1999), 269–361.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    M. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations in general Banach spaces, Amer. J. Math., 93 (1971), 265–298.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    E. DeGiorgi, Sulla differenziabilitá e l’analiticitá delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., Ser. 3, 3 (1957), 25–43.MathSciNetGoogle Scholar
  7. 7.
    E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.zbMATHCrossRefGoogle Scholar
  8. 8.
    E. DiBenedetto, Parabolic equations with multiple singularities, in: Proceedings of Equadiff 9, Brno, 1997.Google Scholar
  9. 9.
    N. Igbida and J. M. Urbano, Uniqueness for nonlinear degenerate problems, Preprint, (2000).Google Scholar
  10. 10.
    O. Ladyzenskaja, V. Solonnikov and N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, A.M.S. Transi. Monog. 23, Providence, R.I., 1968.Google Scholar
  11. 11.
    A. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin, 1992.zbMATHCrossRefGoogle Scholar
  12. 12.
    J. M. Urbano, A free boundary problem with convection for the p-Laplacian, Rend. Mat. Appl. (VII), 17 (1997), 1–19.MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. M. Urbano, Continuous solutions for a degenerate free boundary problem, Ann. Mat. Pura Appl., 178 (2000), 195–224.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    J. M. Urbano, A singular-degenerate parabolic problem: Regularity up to the Dirichlet boundary, in: Free Boundary Problems: Theory and Applications I, GAKUTO International Series Mathematical Sciences and Applications, 13 (2000), 399–410.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • José Miguel Urbano
    • 1
  1. 1.Departamento de MatemáticaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations