Advertisement

Some Aspects of the Thin Film Equation

  • Josephus Hulshof
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

I discuss some aspects of the mathematical theory for the Thin Film Equation in comparison to the Porous Medium Equation. The starting point of this overview is that of self-similar solutions.

Keywords

Strong Solution Free Boundary Problem Porous Medium Equation Order Ordinary Differential Equation Lubrication Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angenent S B 1988 Analyticity of the Interfaces of the Porous Media Equation after the Waiting Time Proc. A.M.S. 102 329–336.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Angenent S B and Aronson D G 1996 The focusing problem for the radially symmetric porous medium equation Comm. P.D.E. 20 1217–1240.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Angenent S B, Aronson D G and Betelú S I 2000 Renormalization study of two-dimensional convergent solutions of the porous medium equation Phys. D 138 344–359.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aronson D G and Hulshof J (in preparation, http://www.cs.vu.nl/~jhulshof/~jhulshof).
  5. 5.
    Almgren R 1996 Singularity formation in Hele-Shaw bubbles Phys. Fluids 8 344–352.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aronson D G 1986 Some Problems in Nonlinear Diffusion, eds. A. Fasano & M. Primicerio, Lecture Notes in Math., CIME Foundation Series, Springer Verlag No. 1224.Google Scholar
  7. 7.
    Aronson D G, Caffarelli L A and Kamin S 1983 How an initially stationary interface begins to move in porous medium flow SIAM J. Math. Anal. 14 639–658.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Aronson D G and Graveleau J 1993 A selfsimilar solution for the focussing problem for the porous medium equation Eur. J. Appl. Math. 4 65–81.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Barenblatt G I 1996 Scaling, Self-Similarity and Intermediate Asymptotics (Cambridge: Cambridge University Press).Google Scholar
  10. 10.
    Barenblatt G I, Beretta E and Bertsch M 1997 The problem of the spreading of a liquid film along a solid surface: A new mathematical formulation Proc. Nat. Acad. Sci. U.S.A. 94 10024–10030.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Beretta E, Bertsch M and Dal Passo R 1995 Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation Arch. Rational Mech. Anal. 129 175–200.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Berg G J B, Hulshof J and Vorst RC AM 1999 Travelling waves for fourth-order semilinear parabolic equations (Leiden preprint MI 16–99).Google Scholar
  13. 13.
    Bernis F 1995 Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems Free boundary problems: theory and applications (Pitman Research Notes in Mathematics 323) ed J I Diaz et al (Harlow: Longman) pp 40–56.Google Scholar
  14. 14.
    Bernis F 1996 Finite speed of propagation and continuity of the interface for thin viscous flows Adv. Differential Equations 1 337–368.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bernis F and Friedman A 1990 Higher order nonlinear degenerate parabolic equations J. Differential Equations 83 179–206.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bernis F and McLeod J B 1991 Similarity solutions of a higher order nonlinear diffusion equation. Nonlinear Anal. 17 1039–1068.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bernis F, Peletier L A and Williams S M 1992 Source type solutions of a fourth order nonlinear degenerate parabolic equation Nonlinear Anal. TMA 18 217–234.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bernis F, Hulshof J and King J R 2000 Dipoles and similarity solutions of the thin film equation in the half-line Nonlinearity 13 1–27.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bernis F, Hulshof J and Quirós F 1999 The “linear” limit of thin film flows as an obstacle-free boundary problem Leiden preprint MI 24–99, to appear in EJAM.Google Scholar
  20. 20.
    Bertozzi A L 1998 The mathematics of moving contact lines in thin liquid films Notices Amer. Math. Soc. 45 689–697.Google Scholar
  21. 21.
    Bertozzi A L, Brenner M P, Dupont T F and Kadanoff L P 1994 Singularities and similarities in interface flows Trends and Perspectives in Applied Mathematics (Applied Mathematical Sciences 100) ed L Sirovich (Berlin: Springer-Verlag) pp 155–208.CrossRefGoogle Scholar
  22. 22.
    Bertozzi A L and Pugh M 1996 The lubrication approximation for thin viscous films: regularity and long time behaviour of weak solutions Comm. Pure Appl. Math. 49 85–123.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bertsch M, Dal Passo R, Davis S H and Giacomelli L 1999 Effective and microscopic contact angles in thin film dynamics European J. Appl. Math. 11 (2000), no. 2, 181–201.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bertsch M, Dal Passo R, Garcke H and Grün G 1998 The thin viscous flow equation in higher space dimensions Adv. Differential Equations 3 417–440.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Bowen M and King J R 1999 Moving boundary problems and non-uniqueness for the thin film equation Leiden preprint MI 28–99.Google Scholar
  26. 26.
    Bowen M and King J R 1999 Asymptotic behaviour of the thin film equation in bounded domains Leiden preprint MI 29–99.Google Scholar
  27. 27.
    Bowen M, Hulshof J and King J R 2000 Anomalous exponents and dipole solutions for the thin film equation Leiden preprint MI 01–2000.Google Scholar
  28. 28.
    Constantin P, Dupont T F, Goldstein R E, Kadanoff L P, Shelley M J and Su-Min Zhou 1993 Droplet breakup in a model of the Hele-Shaw cell Phys. Rev. E 47 4169–4181.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dal Passo R and Garcke H 1999 Solutions of a fourth order degenerate parabolic equation with weak initial trace Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 153–181.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Dupont T F, Goldstein R E, Kadanoff L P and Su-Min Zhou 1993 Finite-time singularity formation in Hele-Shaw systems Phys. Rev. E 47 4182–4196.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ehrhard P and Davis S H 1991 Non-isothermal spreading of liquid drops on horizontal plates J. Fluid Mech. 229 365–388.zbMATHCrossRefGoogle Scholar
  32. 32.
    Ferreira R and Bernis F 1997 Source-type solutions to thin-film equations in higher dimensions European J. Appl. Math. 8 507–524.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Ferreira R and Bernis F 1999 Source-type solutions to thin-film equations: the critical case, Applied Math. Lett. 12 45–50.MathSciNetzbMATHGoogle Scholar
  34. 34.
    Goldstein R E, Pesci A I and Shelley M J 1998 Instabilities and singularities in Hele-Shaw flow Phys. Fluids 10 2701–2723.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Greenspan H P 1978 On the motion of a small viscous droplet that wets a surface J. Fluid Mech. 84 125–143.zbMATHCrossRefGoogle Scholar
  36. 36.
    Greenspan H P and McCay B M 1981 On the wetting of a surface by a very viscous fluid Stud. Appl. Math. 64 95–112.MathSciNetGoogle Scholar
  37. 37.
    Hocking L M 1981 Sliding and spreading of thin two-dimensional drops Quart. J. Mech. Appl. Math. 34 37–55.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Hocking L M 1983 The spreading of a thin drop by gravity and capillarity Quart. J. Mech. Appl. Math. 36 55–69.zbMATHCrossRefGoogle Scholar
  39. 39.
    Hocking L M 1992 Rival contact-angle models and the spreading of drops J. Fluid Mech. 239 671–681.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Hulshof J 1991 Similarity solutions of the porous medium equation with sign changes J. Math. Anal. Appl. 157 75–111.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Hulshof J 1996 A local analysis of similarity solutions of the thin film equation, Nonlinear analysis and applications Warsaw 1994 (GAKUTO Internat. Ser. Math. Sci. Appl. 7) (Tokyo: Gakkotosho) pp 179–192.Google Scholar
  42. 42.
    Hulshof J, King J R and Bowen M 1998 Intermediate asymptotics of the porous medium equation with sign changes Leiden preprint W98–20, to appear in Adv. Diff. Equ.Google Scholar
  43. 43.
    Hulshof J and Shishkov A E 1998 The thin film equation with 2 < n < 3: finite speed of propagation in terms of the Ll-norm Adv. Differential Equations 3 625–642.MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hulshof J and Vazquez J L 1994 Selfsimilar solutions of the second kind for the modified porous medium equation, Eur. J. Appl. Math 5 391–403.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Kamin S and Vazquez J L 1991 Asymptotic behaviour of solutions of the porous medium equation with changing sign SIAM J. Math. Anal. 22 34–45.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Lacey A A 1982 The motion with slip of a thin viscous droplet over a solid surface Stud. Appl. Math. 67 217–230.MathSciNetzbMATHGoogle Scholar
  47. 47.
    Lacey A A, Ockendon J R and Tayler A B 1982 Waiting time solutions of a nonlinear diffusion equation Siam J. Appl. Math. 42 1252–1264.MathSciNetzbMATHGoogle Scholar
  48. 48.
    Muskat M 1937 The Flows of Homogeneous Fluids through Porous Media McGraw-Hill, New York.Google Scholar
  49. 49.
    Myers T G 1998 Thin films with high surface tension SIAM Rev. 40 441–462.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Neogi P and Miller C A 1983 Spreading kinetics of a drop on a rough solid surface J. Colloid Interface Sci. 92 338–349.CrossRefGoogle Scholar
  51. 51.
    Otto F 1998 Lubrication approximation with prescribed nonzero contact angle Comm. Partial Differential Equations 23 2077–2164.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Pesci A I, Goldstein R E and Shelley M J 1999 Domain of convergence of perturbative solutions for Hele-Shaw flow near interface collapse Phys. Fluids 11 2809–2811.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Vazquez J L 1992 An Introduction to the Mathematical Theory of the Porous Medium Equation, in: Shape Optimization and Free Boundaries, ed. M. C. Delfour, Mathematical and Physical Sciences, Series C, 380: 347–389, Kluwer, DordrechtBoston-Leiden.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Josephus Hulshof
    • 1
  1. 1.Faculty of Sciences, Mathematics and Computer Science divisionFree University AmsterdamAmsterdamThe Netherlands

Personalised recommendations