Advertisement

Authentication Codes and Algebraic Curves

  • Chaoping Xing
Conference paper
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

We survey a recent application of algebraic curves over finite fields to the constructions of authentication codes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bierbrauer, “Universal hashing and geometric codes”, Designs, Codes and Cryp­tography, Vol.11, pp. 207–221, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets, “On families of hash functions via geometric codes and concatenation”, Advances in Cryptology­CRYPTO’93,Lecture Notes in Computer Science,773, pp. 331–342, 1994.Google Scholar
  3. 3.
    J. L. Carter and M. N. Wegman, “Universal classes of hash functions”, J. Computer and System Sci., Vol.18, pp. 143–154, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Garcia and H. Stichtenoth, “On the asymptotic behavior of some towers of func­tion fields over finite fields”, J. of Number Theory, Vol.61, pp. 248–273, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    E. N. Gilbert, F. J. MacWilliams and N. J. A. Sloane, “Codes which detect decep­tion”, The Bell System Technical Journal, Vol.33, No.3, pp. 405–424, 1974.MathSciNetGoogle Scholar
  6. 6.
    T. Helleseth and T. Johansson, “Universal hash functions from exponential sums over finite fields and Galois Rings”, Advances in Cryptology-Crypto’96, Lecture Notes in Computer Science, 1109, pp. 31–44, 1996.MathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Johansson, Contributions to unconditionally secure authentication, Ph.D. thesis, Lund, 1994.Google Scholar
  8. 8.
    G. Kabatianskii, B. Smeets, and T. Johansson, “On the cardinality of systematic authentication codes via error correctings”, IEEE Trans. Inform. Theory, Vol. 42, pp. 566–578, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J.-P. Serre, Rational points on curves over finite fields,lecture notes, HarvardGoogle Scholar
  10. 10.
    G J Simmons, “Authentication theory/coding theory”, Advances in Cryptology­Crypto ‘84, Lecture Notes in Computer Science, 196, pp. 411–431, 1984.Google Scholar
  11. 11.
    G J Simmons, “A survey of information authentication”, in Contemporary Cryp­tology, The Science of Information Integrity, G.J. Simmons, ed., IEEE Press, pp. 379–419, 1992.Google Scholar
  12. 12.
    H. Stichtenoth, Algebraic function fields and codes, Berlin: Springer-Verlag, 1993.Google Scholar
  13. 13.
    D. R. Stinson, “Combinatorial characterization of authentication codes”, Designs, Codes and Cryptography, Vol. 2, pp. 175–187, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    D. R. Stinson, “Universal hashing and authentication codes”, Designs,Codes and Cryptography, Vol. 4, pp. 377–346, 1994. (also Advances in Cryptology-CRYPTO ‘81, Lecture Notes in Computer Sci. 576, pp. 74–85, 1992.)Google Scholar
  15. 15.
    D. R. Stinson, “On the connection between universal hashing, combinatorial designs and error-correcting codes”, Congressus Numerantium, Vol. 114, pp. 7–27, 1996.MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. A. Tsfasman and S. G. Vladut, Algebraic-geometric codes, Dordrecht: Kluwer, 1991.zbMATHCrossRefGoogle Scholar
  17. 17.
    W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. Ecole Norm. Sup., Vol. 2, pp. 521–560, 1969.MathSciNetzbMATHGoogle Scholar
  18. 18.
    M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and set equality”, Journal of Computer and System Sciences, Vol. 22, pp. 265–279, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    C. P. Xing and H. X. Wang, and K. Y. Lam, “Constructions of authentication codes from algebraic curves over finite fields,” IEEE Trans. Inform. Theory, Vol. 48, pp. 886–892, 2000.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Chaoping Xing
    • 1
  1. 1.Department of MathematicsNational University of SingaporeSingapore

Personalised recommendations