Advertisement

Explicit Constructions of Towers of Function Fields with Many Rational Places

  • Henning Stichtenoth
Part of the Progress in Mathematics book series (PM, volume 202)

Abstract

We discuss several examples of function field towers Fo C F1 C_ F2 C… over a finite field 1F1, for which the limit (number of rational places of Fn)/(genus of Fn) is positive.

Keywords

Finite Field Function Field Algebraic Function Rational Place Modular Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Drinfeld and S. G. Vladut, Number of points of an algebraic curve, Functional Anal. Appl., 17 (1983), 53–54.MathSciNetGoogle Scholar
  2. 2.
    N. Elkies, Explicit towers of Drinfeld modular curves,this volume.Google Scholar
  3. 3.
    G. van der Geer, Curves over finite fields and codes,this volume.Google Scholar
  4. 4.
    A. García and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math., 121 (1995), 211–222.zbMATHGoogle Scholar
  5. 5.
    A. García and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory, 61 (1996), 248–273.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. García, H. Stichtenoth and M. Thomas, On towers and composita of towers of function fields over finite fields, Finite Fields Appl., 3 (1997), 257–274.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 721–724.MathSciNetzbMATHGoogle Scholar
  8. 8.
    J. P. Serre, Rational points on curves over finite fields, Lecture Notes, Harvard University, 1985.Google Scholar
  9. 9.
    H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.Google Scholar
  10. 10.
    M. A. Tsfasman, S. G. Vladut and T. Zink, Modular Curves, Shimura curves and Goppa codes, better than the Varshamov-Gilbert bound, Math. Nachr., 109 (1982), 21–28.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Henning Stichtenoth
    • 1
  1. 1.FB 6, Mathematik und InformatikUniversität GH EssenEssenGermany

Personalised recommendations