Skip to main content

Optimization of Cell Parameterizations for Tomographic Inverse Problems

  • Chapter
Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 368 Accesses

Abstract

We develop algorithms for the construction of irregular cell (block) models for parameterization of tomographic inverse problems. The forward problem is defined on a regular basic grid of non-overlapping cells. The basic cells are used as building blocks for construction of non-overlapping irregular cells. The construction algorithms are not computationally intensive and not particularly complex, and, in general, allow for grid optimization where cell size is determined from scalar functions, e.g., measures of model sampling or a priori estimates of model resolution. The link between a particular cell j in the regular basic grid and its host cell k in the irregular grid is provided by a pointer array which implicitly defines the irregular cell model. The complex geometrical aspects of irregular cell models are not needed in the forward or in the inverse problem. The matrix system of tomographic equations is computed once on the regular basic cell model. After grid construction, the basic matrix equation is mapped using the pointer array on a new matrix equation in which the model vector relates directly to cells in the irregular model. Next, the mapped system can be solved on the irregular grid. This approach avoids forward computation on the complex geometry of irregular grids. Generally, grid optimization can aim at reducing the number of model parameters in volumes poorly sampled by the data while elsewhere retaining the power to resolve the smallest scales warranted by the data. Unnecessary overparameterization of the model space can be avoided and grid construction can aim at improving the conditioning of the inverse problem. We present simple theory and optimization algorithms in the context of seismic tomography and apply the methods to Rayleigh-wave group velocity inversion and global travel-time tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abers, G. G., and Roecker, S. W. (1991), Deep Structure of an Arc-continent Collision: Earthquake Relocation and Inversion for Upper Mantle P-and S-wave Velocities Beneath Papua New Guinea, J. Geophys. Res. 96, 6379–6401.

    Article  Google Scholar 

  • Bijwaard, H., and Spakman, W. (1999a), Tomographic Evidence for a Narrow Whole Mantle Plume below Iceland, Earth Plan. Sci. Lett. 166, 121–126.

    Article  Google Scholar 

  • Bijwaard, H., and Spakman, W. (1999b), Fast Kinematic Raytracing of First and Later Arriving Seismic Phases, Geophys. J. Int. 139, 359–369.

    Article  Google Scholar 

  • Bijwaard, H., Spakman, W., and Engdahl, E. R. (1998), Closing the Gap between Regional and Global Travel-time Tomography, J. Geophys. Res. 103, 30,055–30,078.

    Article  Google Scholar 

  • Curtis, A., and Snieder, R. (1997), Reconditioning Inverse Problems Using the Genetic Algorithm and Revised Parameterization, Geophys. 62, 1524–1532.

    Article  Google Scholar 

  • Engdahl, E. R., Van Der Hilst, R. D., and Buland, R. P. (1998), Global Teleseismic Earthquake Relocation with Improved Travel Times and Procedures for Depth Determination, Bull. Seismol. Soc. Am. 88, 722–743.

    Google Scholar 

  • Fukao, Y., Obayashi, M., Inoue, H., and Nenbai, M. (1992), Subducting Slabs Stagnant in the Mantle Transition Zone, J. Geophys. Res. 97, 4809–4822.

    Article  Google Scholar 

  • Michelini, A. (1995), An Adaptive-grid Formalism for Travel-time Tomography, Geophys. J. Int. 121, 489–510.

    Article  Google Scholar 

  • Nolet, G. (1985), Solving or Resolving Inadequate and Noisy Tomographic Systems, J. Comp. Phys. 61, 463–482.

    Article  Google Scholar 

  • Nolet, G., Montelli, R., and Virieux, J. (1999), Explicit, Approximate Expressions for the Resolution and a posteriori Covariance of Massive Tomographic Systems, Geophys. J. Int. 138, 36–44.

    Article  Google Scholar 

  • Paige, C. C. and Saunders, M. A. (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Soft. 8, 43–71.

    Article  Google Scholar 

  • Ritzwoller, M. H., and Levshin, A. (1998), Eurasian Surface Wave Tomography: Group Velocities, J. Geophys. Res. 103, 4839–4878.

    Article  Google Scholar 

  • Sambridge, M., Braun, J., and Mcqueen, H. (1995), Geophysical Parameterization and Interpolation of Irregular Data Using Natural Neighbours, Geophys. J. Int. 122, 323–342.

    Article  Google Scholar 

  • Sambridge, M., and Gudmundsson, O. (1998), Tomographic Systems of Equations with Irregular Grids, J. Geophys. Res. 103, 773–781.

    Article  Google Scholar 

  • Vandecar, J. C., and Snieder, R. (1994), Obtaining Smooth Solutions to Large, Linear, Inverse Problems, Geophys. 59, 818–829.

    Article  Google Scholar 

  • Van Der Voo, R., Spakman, W., and Bijwaard, H. (1999), Tethyan Subducted Slabs under India, Earth Planet. Sci. Lett. 171, 7–20.

    Article  Google Scholar 

  • Vesnaver, A. L. (1996), Irregular Grids in Seismic Tomography and Minimum-time Raytracing, Geophys. J. Int. 126, 147–165.

    Article  Google Scholar 

  • Wang, Z., Tromp, J., and Ekström, G. (1998), Global and Regional Surface-wave Inversions: A Spherical Spline Parameterization, Geophys. Res. Lett. 25(2), 207–210.

    Article  Google Scholar 

  • Zhou, H.-W. (1996), A High-resolution P-wave Model for the Top 1200 km of the Mantle, J. Geophys. Res. 101, 27,791–27,810.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Spakman, W., Bijwaard, H. (2001). Optimization of Cell Parameterizations for Tomographic Inverse Problems. In: Levshin, A.L., Ritzwoller, M.H. (eds) Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8264-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8264-4_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6551-6

  • Online ISBN: 978-3-0348-8264-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics