Skip to main content

Anisotropic and Geometric Criteria for Interior Regularity of Weak Solutions to the 3D Navier—Stokes Equations

  • Chapter
Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We formulate sufficient conditions for regularity of a suitable weak solution(v; p ) in a sub—domainD of the time—space cylinderQT in Section 3. The conditions are anisotropic in the sense that the assumptions about vi v2 (the first two components of velocity) differ from the assumptions about the third component of velocity v3. The question what types of deformations of infinitely small volumes of the fluid support regularity and what types contribute to a blow—up is studied in Section 4. Finally, we mention some open problems in Section 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Beirdo da VeigaConcerning the regularity problem for the solutions of the NavierStokes equationsC.R. Acad. Sci. Paris, t. 321, Série I (1995), 405–408.

    Google Scholar 

  2. W. Borchers and T. MiyakawaDecay for the Navier-Stokes flow in halfspacesMath. Ann. 282 (1988), 139–155.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Borchers and H. SohrOn the equationsrot v = g anddiv u = f with zero boundary conditions, Hokkaido Math. J. 19 (1990), 67–87.

    MATH  MathSciNet  Google Scholar 

  4. L. Caffarelli, R. Kohn and L. NirenbergPartial regularity of suitable weak solutions of the Navier-Stokes equationsComm. on Pure and Apl. Math. 35, (1982), 771–831.

    MATH  MathSciNet  Google Scholar 

  5. D. Chae and H. J. ChoeRegularity of solutions to the Navier-Stokes equationElectronic J. of Diff. Equations 5, (1999), 1–7.

    Article  MathSciNet  Google Scholar 

  6. P. Constantin and C. FeffermanDirection of vorticity and the problem of global regularity for the Navier-Stokes equationsIndiana Univ. Math. Journal 42, No. 3 (1993), 775–789.

    MATH  MathSciNet  Google Scholar 

  7. E. B. Fabes, B. F. Jones and N. M. RivièreThe initial value problem for the NavierStokes equations with data in LPArch. Rat. Mech. Anal. 45 (1972), 222–240.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Foias and R. TemamSome analytic and geometric properties of the solutions of the evolution Navier-Stokes equationsJ. Math. Pures et Appl. 58 (1979), 339–368.

    Google Scholar 

  9. G. P. Galdi and P. MaremontiMonotonic decreasing and asymptotic behaviour of the kinetic energy for weak solutions of the Navier—Stokes equations in exterior domainsArch. Rat. Mech. Anal. 94 (1986), 253–266.

    Google Scholar 

  10. G. P. Galdi, AnIntroduction to the Mathematical Theory of the Navier—Stokes Equations Vol. I: Linearized Steady ProblemsSpringer—Verlag, New York—BerlinHeidelberg (1994).

    Google Scholar 

  11. G. P. Galdi, AnIntroduction to the Navier—Stokes Initial—Boundary Value ProbleminFundamental Directions in Mathematical Fluid Mechanicseditors G.P.Galdi, J.Heywood, R.Rannacher, series “Advances in Mathematical Fluid Mechanics”, Vol. 1, Birkhauser-Verlag, Basel (2000), 1–98.

    Google Scholar 

  12. Y. GigaSolutions for semilinear parabolic equations in LP and regularity of weak solutions of the Navier-Stokes equationsJ. of Diff. Equations 61 (1986), 186–212.

    Google Scholar 

  13. J. G. HeywoodThe Navier—Stokes equations: On the existence uniqueness and decay of solutionsIndiana Univ. Math. J. 29 (1980), 639–681.

    Google Scholar 

  14. E. HopfÜber die Anfangswertaufgabe fur die Hydrodynamischen GrundgleichungenMath. Nachr. 4 (1950), 213–231.

    Article  Google Scholar 

  15. K. K. Kiselev and O. A. LadyzhenskayaOn existence and uniqueness of the solutions of the non-stationary problem for a viscous incompressible fluidIzv. Akad. Nauk SSSR bf 21 (1957), 655–680 (in Russian).

    Google Scholar 

  16. H. Kozono and H. SohrRemark on uniqueness of weak solutions to the NavierStokes equationsAnalysis 16 (1996), 255–271.

    Google Scholar 

  17. H. KozonoUniqueness and regularity of weak solutions to the Navier-Stokes equationsLecture Notes in Num. and Appl. Anal. 16 (1998), 161–208.

    Google Scholar 

  18. O. A. LadyzhenskayaThe global solution of the boundary value problem for the Navier—Stokes equations in the case of two spatial variablesComm. on Pure and Apl. Math. 12 (1959), 427–433.

    Google Scholar 

  19. O. A. LadyzhenskayaUniqueness and smoothness of generalized solutions of the Navier-Stokes equationsZap. Nauch. Sem. LOMI 5 (1967), 169–185 (in Russian).

    Google Scholar 

  20. S. Leonardi, J. Málek, J. Neéas and M. PokornÿOn the results of Uchovskii and Yudovich on axially symmetric flows of a viscous fluid in IR 3Zeitschrift für Angew. Anal. 18, (1999), 639–649.

    Google Scholar 

  21. J. LeraySur le mouvements d’un liquide visqueux emplissant l’espaceActa Mathematica 63 (1934), 193–248.

    Google Scholar 

  22. J. L. Lions and G. ProdiUn théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, Compte Rend. Acad. Sci. Paris 248 (1959), 35193521.

    Google Scholar 

  23. T. Miyakawa and H. SohrOn energy inequality smoothness and large time behaviour in L 2 for weak solutions of the Navier—Stokes equations in exterior domains, Math. Z. 199 (1988), 455–478.

    Google Scholar 

  24. J. Neéas, M. Rüzièka and V. SverákOn Leray’s self-similar solutions of the NavierStokes equationsActa Mathematica 176 (1996), 283–294.

    Article  MathSciNet  Google Scholar 

  25. J. NeustupaPartial regularity of weak solutions to the Navier-Stokes equations in the class L“(0 T; L3(Sl)3), J. of Mathematical Fluid Mechanics 1 (1999), 309–325.

    Google Scholar 

  26. J. Neustupa and P. PenelRegularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity componentin Nonlinear Applied Analysiseditors A.Sequeira et al., Plenum Press, New York (1999), 391402.

    Google Scholar 

  27. J. Neustupa, A. Novotnÿ and P. Penel, Aninterior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocityto appear inTopics in Mathematical Fluid Mechanicsa special issue of Quaderni di Matematica (2001).

    Google Scholar 

  28. J. Neustupa and M. Pokornÿ, Aninterior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equationsJ. of Mathematical Fluid Mechanics 2 (2000), 381–399.

    Google Scholar 

  29. G. ProdiUn teorema di unicità per el equazioni di Navier-StokesAnn. Mat. Pura Appl. 48 (1959), 173–182.

    Google Scholar 

  30. J. SerrinOn the interior regularity of weak solutions of the Navier-Stokes equationsArch. Rat. Mech. Anal. 9 (1962), 187–195.

    Google Scholar 

  31. H. SohrZur Regularitätstheorie der Instationären Gleichungen von Navier-StokesMath. Z. 184 (1983), 359–375.

    Google Scholar 

  32. H. Sohr and W. von WahlOn the singular set and the uniqueness of weak solutions of the Navier-Stokes equationsManuscripta Math. 49 (1984), 27–59.

    Article  MathSciNet  Google Scholar 

  33. H. Sohr, W. von Wahl and M. WiegnerZur Asymptotik der Gleichungen von NavierStokesNachr. Akad. Wiss. Göttingen 146 (1986), 1–15.

    Google Scholar 

  34. ] V. A. SolonnikovEstimates of solutions of a non-stationary Navier-Stokes systemZap. Nauch. Sem. LOMI 38 (1973), 153–231 (in Russian).

    Google Scholar 

  35. Y. TaniuchiOn generalized energy inequality of the Navier-Stokes equationsManuscripta Mathematica 94 (1997), 365–384.

    Article  MathSciNet  Google Scholar 

  36. R. TemamNavier-Stokes EquationsNorth-Holland, Amsterdam-New York-Oxford (1977).

    Google Scholar 

  37. W. von WahlRegularity of weak solutions of the Navier-Stokes equationsProc. Symp. Pure Appl. Math. 45 (1986) 497–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Neustupa, J., Penel, P. (2001). Anisotropic and Geometric Criteria for Interior Regularity of Weak Solutions to the 3D Navier—Stokes Equations. In: Neustupa, J., Penel, P. (eds) Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8243-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8243-9_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9489-0

  • Online ISBN: 978-3-0348-8243-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics