Skip to main content

Nitric oxide and myocarditis

  • Chapter
  • 108 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Myocarditis is an inflammatory disease of the heart, usually caused by viral infection. The clinical course of patients with myocarditis is paradoxical. The survival of patients with mild forms of myocarditis is much worse than the survival of patients with severe, fulminant myocarditis. One hypothesis explaining this paradox involves nitric oxide (NO). Perhaps myocarditic patients who produce large amounts of NO clear their viral infections and so survive longer, although they suffer from hemodynamic instability due to excess NO. Conversely, myocarditic patients who generate less NO are hemodynamically stable, but less NO permits greater levels of viral replication, leading to a higher mortality. This review examines the role of NO in myocarditis, focusing on viral myocarditis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wynne J (1997) The cardiomyopathies and myocarditis. In: ES Braunwald (ed): Heart disease: a textbook of cardiovascular disease. 5 ed. WB Saunders, Philadephia 1404–1463

    Google Scholar 

  2. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A (1997) Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96: 1180–1184

    Article  PubMed  CAS  Google Scholar 

  3. Aretz HT, Billingham ME, Edwards WD, Factor SM, Fallon JT, Fenoglio JJ Jr, Olsen EG, Schoen FJ (1987) Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol 1: 3–14

    PubMed  CAS  Google Scholar 

  4. Felker GM, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Baughman KL, Hare JM (2000) Echocardiographic findings in fulminant and acute myocarditis. J Am Coll Cardiol 36: 227–232

    Article  PubMed  CAS  Google Scholar 

  5. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342: 1077–1084

    Article  PubMed  CAS  Google Scholar 

  6. McCarthy RE 3rd, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Hare JM, Baughman KL (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342: 690–695

    Article  PubMed  Google Scholar 

  7. Felker GM, Hu W, Hare JM, Hruban RH, Baughman KL, Kasper EK (1999) The spectrum of dilated cardiomyopathy. The Johns Hopkins experience with 1,278 patients. Medicine (Baltimore) 78: 270–283

    Article  PubMed  CAS  Google Scholar 

  8. Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173: 89–97

    Article  PubMed  CAS  Google Scholar 

  9. Bogdan C, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173: 17–26

    Article  PubMed  CAS  Google Scholar 

  10. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15: 323–250

    Article  PubMed  CAS  Google Scholar 

  11. Woodruff JF (1980) Viral myocarditis. A review. Am J Pathol 101: 425–484

    PubMed  CAS  Google Scholar 

  12. Mannick JB (1995) The antiviral role of nitric oxide. Res Immunol 146: 693–697

    Article  PubMed  CAS  Google Scholar 

  13. Powell KL, Baylis SA (1995) The antiviral effects of nitric oxide. Trends Microbiol 3: 81–2

    Article  PubMed  CAS  Google Scholar 

  14. Bogdan C (1997) Of microbes, macrophages and nitric oxide. Behring Inst Mitt 99: 58–72

    PubMed  CAS  Google Scholar 

  15. Reiss CS, Komatsu T (1998) Does nitric oxide play a critical role in viral infections? J Virol 72: 4547–4551

    PubMed  CAS  Google Scholar 

  16. Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD (1993) Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 261: 1445–1448

    Article  PubMed  CAS  Google Scholar 

  17. Croen KD 8 (1993) Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91: 2446–2452

    Article  PubMed  CAS  Google Scholar 

  18. Xing Z, Schat KA (2000) Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek’s disease virus. J Virol 74: 3605–3612

    Article  PubMed  CAS  Google Scholar 

  19. Rimmelzwaan GF, Baars MM, de Lijster P, Fouchier RA, Osterhaus AD (1999) Inhibition of influenza virus replication by nitric oxide. J Virol 73: 8880–8883

    PubMed  CAS  Google Scholar 

  20. Hirasawa K, Jun HS, Han HS, Zhang ML, Hollenberg MD, Yoon JW (1999) Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibition of the tyrosine kinase signalling pathway and subsequent suppression of nitric oxide production in macrophages. J Virol 73: 8541–8548

    PubMed  CAS  Google Scholar 

  21. Lane TE, Fox HS, Buchmeier MJ (1999) Inhibition of nitric oxide synthase-2 reduces the severity of mouse hepatitis virus-induced demyelination: implications for NOS2/NO regulation of chemokine expression and inflammation. J Neurovirol 5: 48–54

    Article  PubMed  CAS  Google Scholar 

  22. Kodukula P, Liu T, Rooijen NV, Jager MJ, Hendricks RL (1999) Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 162: 2895–2905

    PubMed  CAS  Google Scholar 

  23. Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ (1999) An antiviral mechanism of nitric oxide: inhibition of a viral protease. immunity 10: 21–28

    Article  PubMed  CAS  Google Scholar 

  24. Fujioka N, Akazawa R, Ohashi K, Fujii M, Ikeda M, Kurimoto M (1999) Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol 73: 2401–2409

    PubMed  CAS  Google Scholar 

  25. Pope M, Marsden PA, Cole E, Sloan S, Fung LS, Ning Q, Ding JW, Leibowitz JL, Phillips MJ, Levy G A (1998) Resistance to murine hepatitis virus strain 3 is dependent on production of nitric oxide. J Virol 72: 7084–7090

    PubMed  CAS  Google Scholar 

  26. MacLean A, Wei XQ, Huang FP, Al-Alem UA, Chan WL, Liew FY (1998) Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses. J Gen Virol 79: 825–830

    PubMed  CAS  Google Scholar 

  27. Zaragoza C, Ocampo CJ, Saura M, McMillan A, Lowenstein CJ (1997) Nitric oxide inhibition of coxsackievirus replication in vitro. J Clin Invest 100: 1760–1

    Article  PubMed  CAS  Google Scholar 

  28. Lin YL, Huang YL, Ma SH, Yeh CT, Chiou SY, Chen LK, Liao CL (1997) Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71: 5227–5235

    PubMed  CAS  Google Scholar 

  29. Adler H, Beland JL, Del-Pan NC, Kobzik L, Brewer JP, Martin TR, Rimm IJ (1997) Suppression of herpes simplex virus type 1 (HSV-1 (-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J Exp Med 185: 1533–1540

    Article  PubMed  CAS  Google Scholar 

  30. Hiraoka Y, Kishimoto C, Takada H, Nakamura M, Kurokawa M, Ochiai H, Shiraki K (1996) Nitric oxide and murine coxsackievirus B3 myocarditis: aggravation of myocarditis by inhibition of nitric oxide synthase. J Am Coll Cardiol 28: 1610–1615

    Article  PubMed  CAS  Google Scholar 

  31. Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S (1996) Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 70: 3972–3927

    PubMed  CAS  Google Scholar 

  32. Pertile TL, Karaca K, Sharma JM, Walser MM (1996) An antiviral effect of nitric oxide: inhibition of reovirus replication. Avian Dis 40: 342–348

    Article  PubMed  CAS  Google Scholar 

  33. Melkova Z, Esteban M (1995) Inhibition of vaccinia virus DNA replication by inducible expression of nitric oxide synthase. J Immunol 155: 5711–5718

    PubMed  CAS  Google Scholar 

  34. Akarid K, Sinet M, Desforges B, Gougerot-Pocidalo MA (1995) Inhibitory effect of nitric oxide on the replication of a murine retrovirus in vitro and in vivo. J Virol 69: 7001–7005

    PubMed  CAS  Google Scholar 

  35. Karupiah G, Harris N. Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med 1995 181: 2171–2179

    Article  PubMed  CAS  Google Scholar 

  36. Bi Z, Reiss CS (1995) Inhibition of vesicular stomatitis virus infection by nitric oxide. J Virol 69: 2208–2213

    PubMed  CAS  Google Scholar 

  37. Harris N, Buller RM, Karupiah G (1995) Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J. Virol 69: 910–915

    PubMed  CAS  Google Scholar 

  38. Mannick JB, Stamler JS, Teng E, Simpson N, Lawrence J, Jordan J, Finberg RW (1999) Nitric oxide modulates HIV-1 replication. J Acquir Immune Defic Syndr 22: 1–9

    Article  PubMed  CAS  Google Scholar 

  39. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79: 1137–1146

    Article  PubMed  CAS  Google Scholar 

  40. Karupiah G, Chen JH, Mahalingam S, Nathan CF, MacMicking JD (1998) Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 188: 1541–1546

    Article  PubMed  CAS  Google Scholar 

  41. Herskowitz A, Wolfgram LJ, Rose NR, Beisel KW (1987) Coxsackievirus B3 murine myocarditis: a pathologic spectrum of myocarditis in genetically defined inbred strains. J Am Coll Cardiol 9: 1311–1319

    Article  PubMed  CAS  Google Scholar 

  42. Gauntt CJ, Godeny EK, Lutton CW, Fernandes G (1989) Role of natural killer cells in experimental murine myocarditis. Springer Semiti Immunopathol 11: 51–59

    CAS  Google Scholar 

  43. Godeny EK, Gauntt CJ (1987) Murine natural killer cells limit coxsackievirus B3 replication. J Immunol 139: 913–918

    PubMed  CAS  Google Scholar 

  44. Godeny EK, Gauntt CJ (1986) Involvement of natural killer cells in coxsackievirus B3-induced murine myocarditis. J Immunol 137: 1695z–1702z

    Google Scholar 

  45. Liu P, Penninger J, Aitken K, Sole M, Mak T (1995) The role of transgenic knockout models in defining the pathogenesis of viral heart disease. Eur Heart J 16 (Suppl O): 25–27

    Article  PubMed  Google Scholar 

  46. Lowenstein CJ, Hill SL, Lafond-Walker A, Wu J, Allen G, Landavere M, Rose NR, Herskowitz A (1996) Nitric oxide inhibits viral replication in murine myocarditis. J Clin Invest 97: 1837–1843

    Article  PubMed  CAS  Google Scholar 

  47. Mikami S, Kawashima S, Kanazawa K, Hirata K, Katayama Y, Hotta H, Hayashi Y, Ito H, Yokoyama M (1996) Expression of nitric oxide synthase in a murine model of viral myocarditis induced by coxsackievirus B3. Biochem Biophys Res Commun 220: 983–989

    Article  PubMed  CAS  Google Scholar 

  48. Zhang H, Be van A, Inniss H, Archard LC, Robinson NM, Debelder A, Martin JF, Charles IG, Moncada S (1997) Differential expression of inducible nitric oxide synthase in murine myocardium infected with wildtype or attenuated Coxsackievirus B3. Biochem Soc Trans 25: 415S

    PubMed  CAS  Google Scholar 

  49. Colston JT, Chandrasekar B, Freeman GL (1998) Expression of apoptosis-related proteins in experimental coxsackievirus myocarditis. Cardiovasc Res 38: 158–168

    Article  PubMed  CAS  Google Scholar 

  50. Zaragoza C, Ocampo C, Saura M, Leppo M, Wei XQ, Quick R, Moneada S, Liew FY, Lowenstein CJ (1998) The role of inducible nitric oxide synthase in the host response to Coxsackievirus myocarditis. Proc Natl Acad Sci USA 95: 2469–2474

    Article  PubMed  CAS  Google Scholar 

  51. Barbaro G, Di Lorenzo G, Soldini M, Giancaspro G, Grisorio B, Pelliccili A, Barbarini G (1999) Intensity of myocardial expression of inducible nitric oxide synthase influences the clinical course of human immunodeficiency virus-associated cardiomyopathy. Gruppo Italiano per lo Studio Cardiologico dei pazienti affetti da AIDS (GISCA). Circulation 100: 933–939

    Article  PubMed  CAS  Google Scholar 

  52. Horwitz MS, Krahl T, Fine C, Lee J, Sarvetnick N (1999) Protection from lethal cox-sackievirus-induced pancreatitis by expression of gamma interferon. J Virol 73: 17552–1766

    Google Scholar 

  53. Robinson NM, Zhang HY, Bevan AL, De Beider AJ, Moneada S, Martin JF, Archard LC (1999) Induction of myocardial nitric oxide synthase by Coxsackie B3 virus in mice. Eur J Clin Invest 29: 700–7

    Article  PubMed  CAS  Google Scholar 

  54. Zaragoza C, Ocampo CJ, Saura M, Bao C, Leppo M, Lafond-Walker A, Thiemann DR, Hruban R, Lowenstein CJ (1999) Inducible nitric oxide synthase protection against cox-sackievirus pancreatitis. J Immunol 163: 5497–5504

    PubMed  CAS  Google Scholar 

  55. Gluck B, Merkle I, Dornberger G, Stelzner A (2000) Expression of inducible nitric oxide synthase in experimental viral myocarditis. Herz 25: 255–260

    Article  PubMed  CAS  Google Scholar 

  56. Roivainen M, Rasilainen S, Ylipaasto P, Nissinen R, Ustinov J, Bouwens L, Eizirik DL, Hovi T, Otonkoski T (2000) Mechanisms of coxsackievirus-induced damage to human pancreatic beta-cells. J Clin Endocrinol Metab 85: 432–440

    Article  PubMed  CAS  Google Scholar 

  57. De Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang FC (1995) Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 92: 6399–6403

    Article  PubMed  Google Scholar 

  58. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sä USA 94: 5243–5248

    Article  CAS  Google Scholar 

  59. Chan J, Xing Y, Magliozzo RS, Bloom BR (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175: 1111–1122

    Article  PubMed  CAS  Google Scholar 

  60. Jang D, Williams RJ, Wang MX, Wei AQ, Murrell GA (1999) Staphylococcus aureus stimulates inducible nitric oxide synthase in articular cartilage. Arthritis Rheum 42: 2410–2417

    Article  PubMed  CAS  Google Scholar 

  61. McInnes IB, Leung B, Wei XQ, Gemmell CC, Liew FY (1998) Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase. J Immunol 160: 308–315

    PubMed  CAS  Google Scholar 

  62. Sasaki S, Miura T, Nishikawa S, Yamada K, Hirasue M, Nakane A (1998) Protective role of nitric oxide in Staphylococcus aureus infection in mice. Infect Immun 66: 1017–1022

    PubMed  CAS  Google Scholar 

  63. Sakiniene E, Bremell T, Tarkowski A (1997) Inhibition of nitric oxide synthase (NOS) aggravates Staphylococcus aureus septicaemia and septic arthritis. Clin Exp Immunol 110: 370–377

    Article  PubMed  CAS  Google Scholar 

  64. Auguet M, Lonchampt MO, Delaflotte S, Goulin-Schulz J, Chabrier PE, Braquet P (1992) Induction of nitric oxide synthase by lipoteichoic acid from Staphylococcus aureus in vascular smooth muscle cells. FEBS Lett 297: 183–185

    Article  PubMed  CAS  Google Scholar 

  65. Kirchhoff LV (1994) Chagas’ disease. In: KJ Isselbacher, E Braunwald, JD Wilson, JB Martin, AS Fauci, DL Kasper (eds): Harrison’s principles of internal medicine. 13 ed. McGraw-Hill, New York, 176–177

    Google Scholar 

  66. Petray P, Rottenberg ME, Grinstein S, Orn A (1994) Release of nitric oxide during the experimental infection with Trypanosoma cruzi. Parasite Immunol 16: 193–199

    Article  PubMed  CAS  Google Scholar 

  67. Pakianathan DR, Kuhn RE (1994) Trypanosoma cruzi affects nitric oxide production by murine peritoneal macrophages. J Parasitol 80: 432–437

    Article  PubMed  CAS  Google Scholar 

  68. Rottenberg ME, Castanos-Velez E, de Mesquita R, Laguardia OG, Biberfeld P, Orn A (1996) Intracellular co-localization of Trypanosoma cruzi and inducible nitric oxide synthase (iNOS): evidence for dual pathway of iNOS induction. Eur J Immunol 26: 3203–3213

    Article  PubMed  CAS  Google Scholar 

  69. Abrahamsohn IA, Coffman RL (1996) Trypanosoma cruzi: IL-10, TNF, IFN-gamma, and IL-12 regulate innate and acquired immunity to infection. Exp Parasitol 84: 231–244

    Article  PubMed  CAS  Google Scholar 

  70. Silva JS, Vespa GN, Cardoso MA, Aliberti JC, Cunha FQ (1995) Tumor necrosis factor alpha mediates resistance to Trypanosoma cruzi infection in mice by inducing nitric oxide production in infected gamma interferon-activated macrophages. Infect Immun 63: 4862–4867

    PubMed  CAS  Google Scholar 

  71. Munoz-Fernandez MA, Fernandez MA, Fresno M (1992) Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Eur J Immunol 22: 301–307

    Article  PubMed  CAS  Google Scholar 

  72. Vespa GN, Cunha FQ, Silva JS (1994) Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Immun 61: 5177–5182

    Google Scholar 

  73. Petray P, Castanos-Velez E, Grinstein S, Orn A, Rottenberg ME (1995) Role of nitric oxide in resistance and histopathology during experimental infection with Trypanosoma cruzi. Immunol Lett 47: 121–126

    Article  PubMed  CAS  Google Scholar 

  74. Chandrasekar B, Melby PC, Troyer DA, Freeman GL (2000) Differential regulation of nitric oxide synthase isoforms in experimental acute chagasic cardiomyopathy. Clin Exp Immunol 121: 112–119

    Article  PubMed  CAS  Google Scholar 

  75. Huang H, Chan J, Wittner M, Jelicks LA, Morris SA, Factor SM, Weiss LM, Braunstein VL, Bacchi CJ, Yarlett N et al (1999) Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol 31: 75–88

    Article  PubMed  CAS  Google Scholar 

  76. Holscher C, Kohler G, Muller U, Mossmann H, Schaub GA, Brombacher F (1998) Defective nitric oxide effector functions lead to extreme susceptibility of Trypanosoma cruzi-infected mice deficient in gamma interferon receptor or inducible nitric oxide synthase. Infect Immun 66: 1208–1215

    PubMed  CAS  Google Scholar 

  77. Perez-Fuentes R, Sanchez-Guillen MC, Gonzalez-Alvarez C, Monteon VM, Reyes PA, Rosales-Encina JL (1998) Humoral nitric oxide levels and antibody immune response of symptomatic and indeterminate Chagas’ disease patients to commercial and autochthonous Trypanosoma cruzi antigen. Am J Trop Med Hyg 58: 715–720

    PubMed  CAS  Google Scholar 

  78. Schluter D, Deckert-Schluter M, Lorenz E, Meyer T, Rollinghoff M, Bogdan C (1999) Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice. J Immunol 162: 3512–3518

    PubMed  CAS  Google Scholar 

  79. Hayashi S, Chan CC, Gazzinelli RT, Pham NT, Cheung MK, Roberge FG (1996) Protective role of nitric oxide in ocular toxoplasmosis. Br J Ophthalmol 80: 644–648

    Article  PubMed  CAS  Google Scholar 

  80. Hayashi S, Chan CC, Gazzinelli R, Roberge FG (1996) Contribution of nitric oxide to the host parasite equilibrium in toxoplasmosis. J Immunol 156: 1476–1481

    PubMed  CAS  Google Scholar 

  81. Candolfi E, Villard O, Thouvenin M, Kien TT (1996) Role of nitric oxide-induced immune suppression in toxoplasmosis during pregnancy and in infection by a virulent strain of Toxoplasma gondii. Curr Top Microbiol Immunol 219: 141–154

    PubMed  CAS  Google Scholar 

  82. Kooy NW, Lewis SJ, Royall JA, Ye YZ, Kelly DR, Beckman JS (1997) Extensive tyrosine nitration in human myocardial inflammation: evidence for the presence of peroxynitrite. Crit Care Med 25: 812–819

    Article  PubMed  CAS  Google Scholar 

  83. de Beider AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF (1995) Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease. Br Heart J 74: 426–430

    Article  Google Scholar 

  84. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH et al (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93: 1087–1094

    Article  PubMed  CAS  Google Scholar 

  85. Thoenes M, Forstermann U, Tracey WR, Bleese NM, Nussler AK, Scholz H, Stein B (1996) Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol 28: 165–169

    Article  PubMed  CAS  Google Scholar 

  86. Winlaw DS, Smythe GA, Keogh AM, Schyvens CG, Spratt PM, Macdonald PS (1994) Increased nitric oxide production in heart failure. Lancet 344: 373–374

    Article  PubMed  CAS  Google Scholar 

  87. de Beider AJ, Radomski MW, Why HJ, Richardson PJ, Bucknall CA, Salas E, Martin JF, Moneada S (1993) Nitric oxide synthase activities in human myocardium. Lancet 341: 84–85

    Article  Google Scholar 

  88. Fukuchi M, Hussain SN, Giaid A (1998) Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and beta-adrenergic receptor therapy. Circulation 98: 132–139

    Article  PubMed  CAS  Google Scholar 

  89. Ishiyama S, Hiroe M, Nishikawa T, Shimojo T, Hosokawa T, Ikeda I, Toyozaki T, Kasajima T, Marumo F (1999) Inhibitory effects of vesnarinone in the progression of myocardial damage in experimental autoimmune myocarditis in rats. Cardiovasc Res 43: 389–397

    Article  PubMed  CAS  Google Scholar 

  90. Goren N, Leiros CP, Sterin-Borda L, Borda E (1998) Nitric oxide synthase in experimental autoimmune myocarditis dysfunction. J Mol Cell Cardiol 30: 2467–2474

    Article  PubMed  CAS  Google Scholar 

  91. Shin T, Tanuma N, Kim S, Jin J, Moon C, Kim K, Kohyama K, Matsumoto Y, Hyun B (1998) An inhibitor of inducible nitric oxide synthase ameliorates experimental autoimmune myocarditis in Lewis rats. J Neuroimmunol 92: 133–138

    Article  PubMed  CAS  Google Scholar 

  92. Ishiyama S, Hiroe M, Nishikawa T, Abe S, Shimojo T, Ito H, Ozasa S, Yamakawa K, Matsuzaki M, Mohammed MU et al (1997) Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. Circulation 95: 489–496

    Article  PubMed  CAS  Google Scholar 

  93. Hirono S, Islam MO, Nakazawa M, Yoshida Y, Kodama M, Shibata A, Izumi T, Imai S (1997) Expression of inducible nitric oxide synthase in rat experimental autoimmune myocarditis with special reference to changes in cardiac hemodynamics. Circ Res 80: 11–20

    Article  PubMed  CAS  Google Scholar 

  94. Bachmaier K, Neu N, Pummerer C, Duncan GS, Mak TW, Matsuyama T, Penninger JM (1997) iNOS expression and nitrotyrosine formation in the myocardium in response to inflammation is controlled by the interferon regulatory transcription factor 1. Circulation 96: 585–591

    PubMed  CAS  Google Scholar 

  95. Cooper LT Jr (2000) Giant cell myocarditis: diagnosis and treatment. Herz 25: 291–298

    Article  PubMed  Google Scholar 

  96. Cooper LT Jr, Berry GJ, Shabetai R (1997) Idiopathic giant-cell myocarditis — natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N Engl J Med 336: 1860–1866

    Article  PubMed  Google Scholar 

  97. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271: 22810–22814

    Article  PubMed  CAS  Google Scholar 

  98. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96: 657–662

    Article  PubMed  CAS  Google Scholar 

  99. Skarsgard PL, Wang X, McDonald P, Lui AH, Lam EK, McManus BM, van Breemen C, Laher I (2000) Profound inhibition of myogenic tone in rat cardiac allografts is due to eNOS-and iNOS-based nitric oxide and an intrinsic defect in vascular smooth muscle contraction. Circulation 101: 1303–1310

    Article  PubMed  CAS  Google Scholar 

  100. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–389

    Article  PubMed  CAS  Google Scholar 

  101. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84: 1020–1031

    Article  PubMed  CAS  Google Scholar 

  102. Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108: 277–293

    Article  PubMed  CAS  Google Scholar 

  103. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279: 234–237

    Article  PubMed  CAS  Google Scholar 

  104. Forfia PR, Hintze TH, Wolin MS, Kaley G (1999) Role of nitric oxide in the control of mitochondrial function. Adv Exp Med Biol 471: 381–388

    Article  PubMed  CAS  Google Scholar 

  105. Loke KE, Laycock SK, Mital S, Wolin MS, Bernstein R, Oz M, Addonizio L, Kaley G, Hintze TH (1999) Nitric oxide modulates mitochondrial respiration in failing human heart. Circulation 100: 1291–1297

    Article  PubMed  CAS  Google Scholar 

  106. Zhao G, Bernstein RD, Hintze TH (1999) Nitric oxide and oxygen utilization: exercise, heart failure and diabetes. Coron Artery Dis 10: 315–320

    Article  PubMed  CAS  Google Scholar 

  107. Wolin MS, Xie YW, Hintze TH (1999) Nitric oxide as a regulator of tissue oxygen consumption. Curr Opin Nephrol Hypertens 8: 97–103

    Article  PubMed  CAS  Google Scholar 

  108. Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH (1996) Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 79: 381–387

    Article  PubMed  CAS  Google Scholar 

  109. Shen W, Hintze TH, Wolin MS (1995) Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 92: 3505–3512

    Article  PubMed  CAS  Google Scholar 

  110. Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185: 601–607

    Article  PubMed  CAS  Google Scholar 

  111. Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240: 419–424

    Article  PubMed  CAS  Google Scholar 

  112. Mohr S, Zech B, Lapetina EG, Brune B (1997) Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun 238: 387–391

    Article  PubMed  CAS  Google Scholar 

  113. Gow A, Foust R, Malcolm S, Gole M, Ischiropoulos H (1999) Biochemical regulation of nitric oxide cytotoxicity. In: FC Fang (ed): Nitric oxide and infection. Plenum Publishers, New York 180–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Lowenstein, C.J., Ohnishi, T. (2001). Nitric oxide and myocarditis. In: Salvemini, D., Billiar, T.R., Vodovotz, Y. (eds) Nitric Oxide and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8241-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8241-5_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9488-3

  • Online ISBN: 978-3-0348-8241-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics