Skip to main content

Free radicals as mediators of inflammation in atherosclerosis

  • Chapter
Inflammatory and Infectious Basis of Atherosclerosis

Part of the book series: Progress in Inflammation Research ((PIR))

  • 93 Accesses

Abstract

Free radicals are chemical species that possess an unpaired electron and are often formed as intermediates in chemical reactions. The presence of the unpaired electron makes these molecules unstable and reactive. Oxygen free radicals are reactive oxygen species (ROS) formed from the incomplete reduction of oxygen and exert a range of important effects in biological cells and tissues. Oxygen radicals and other ROS are produced by normal cellular metabolism and have critical roles in the processes of cellular signaling and injury. The four-electron reduction of molecular oxygen to water, catalyzed by the mitochondrial electron transport chain, accounts for95%of oxygen consumption in tissues. The remaining 5% proceeds via univalent reduction of oxygen with the production of superoxide anions (’02), hydrogen peroxide (H2O2), and hydroxyl radicals (’OH). These reactive products have been documented to cause cell injury. Therefore, cells have evolved several systems that function to avoid or correct damage caused by these oxygen radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schraufstatter I, Hyslop PA, Jackson JH, Cochrane CG (1988) Oxidant induced DNA dmage of target cells.J Clin Invest82: 1040–1050

    Article  PubMed  CAS  Google Scholar 

  2. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders.Proc Soc Exp Biol Med222 (3): 236–245

    Article  PubMed  CAS  Google Scholar 

  3. Beckman KB, Ames BN (1998) The free radical theory of aging matures.Physiol Rev78 (2): 547–581

    PubMed  CAS  Google Scholar 

  4. Wang P, Chen H, Qin H, Sankarapandi S, Becher MW, Wong PC, Zweier JL (1998) Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury.Proc Natl Acad Sci USA95 (8): 4556–4560

    Article  PubMed  CAS  Google Scholar 

  5. Janiszewski M, Pasqualucci CA, Souza LC, Pileggi F, da Luz PL, Laurindo FR (1998) Oxidized thiols markedly amplify the vascular response to balloon injury in rabbits through a redox active metal-dependent pathway.Cardiovasc Res39 (2): 327–338

    Article  PubMed  CAS  Google Scholar 

  6. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation.J Clin Invest97 (8): 1916–1923

    Article  PubMed  CAS  Google Scholar 

  7. Gotto AM Jr (1997) Cholesterol management in theory and practice.Circulation96 (12): 4424–4430

    Article  PubMed  Google Scholar 

  8. Steinberg D (1997) Oxidative modification of LDL and atherogenesis.Circulation95 (4): 1062–1071

    Article  PubMed  CAS  Google Scholar 

  9. Hiramatsu K, Rosen H, Heinecke JW, Wolfbauer G, Chait A (1987) Superoxide initiates oxidation of low density lipoprotein by human monocytes.Arteriosclerosis 7(1): 55–60

    Article  PubMed  CAS  Google Scholar 

  10. Fang X, Weintraub NL, Rios CD, Chappell DA, Zwacka RM, Engelhardt JF, Oberley LW, Yan T, Heistad DD, Spector AA (1998) Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells.Cire Res82 (12): 1289–1297

    Article  CAS  Google Scholar 

  11. Inoue N, Kawashima S, Hirata KI, Rikitake Y, Takeshita S, Yamochi W, Akita H, Yokoyama M (1998) Stretch force on vascular smooth muscle cells enhances oxidation of LDL via superoxide production. AmJ Physiol274 (6 Pt 2): H1928–H1932

    PubMed  CAS  Google Scholar 

  12. Chisolm GM 3rd, Hazen SL, Fox PL, Cathcart MK (1999) The oxidation of lipoproteins by monocytes-macrophages. Biochemical and biological mechanisms.J Biol Chem274 (37): 25959–25962

    Article  PubMed  CAS  Google Scholar 

  13. Shimokawa H (1999) Primary endothelial dysfunction: atherosclerosis.J Mol CellCardiol31 (1): 23–37

    CAS  Google Scholar 

  14. Weyer RM, Luscher TF, Cosentino F, Rabelink TJ (1998) Atherosclerosis and the two faces of endothelial nitric oxide synthase.Circulation97 (1): 108–112

    Article  Google Scholar 

  15. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. AmJ Physiol271 (5 Pt 1): C1424–C1437

    PubMed  CAS  Google Scholar 

  16. Minor RL Jr, Myers PR, Guerra R Jr, Bates JN, Harrison DG (1990) Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta.J Clin Invest86 (6): 2109–2116

    Article  PubMed  CAS  Google Scholar 

  17. Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG (1991) Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits.Circ Res69 (5): 1293–1300

    Article  PubMed  CAS  Google Scholar 

  18. Mugge A, Elwell JH, Peterson TE, Harrison DG (1991) Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. AmJ Physiol260 (2 Pt 1): C219–C225

    PubMed  CAS  Google Scholar 

  19. Darley-Usmar V, White R (1997) Disruption of vascular signalling by the reaction of nitric oxide with superoxide: implications for cardiovascular disease.Exp Physiol82 (2): 305–316

    PubMed  CAS  Google Scholar 

  20. Wang P, Zweier JL (1996) Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury.J Biol Chem271 (46): 29223–29230

    Article  PubMed  CAS  Google Scholar 

  21. Moriel P, Abdalla DS (1997) Nitrotyrosine bound to beta-VLDL-apoproteins: a biomarker of peroxynitrite formation in experimental atherosclerosis.Biochem Biophys Res Commun17232 (2): 332–335

    Article  Google Scholar 

  22. Luoma JS, Stralin P, Markfund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S (1998) Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins.Arterioscler Thromb Vast Biol18 (2): 157–167

    Article  CAS  Google Scholar 

  23. Griendling KK, Ushio-Fukai M (1998) Redox control of vascular smooth muscle proliferation.J Lab Clin Med132 (1): 9–15

    Article  PubMed  CAS  Google Scholar 

  24. Rao GN, Berk BC (1992) Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression.Circ Res70: 593–599

    Article  PubMed  CAS  Google Scholar 

  25. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2for platelet-derived growth factor signal transduction.Science270 (5234): 296–299

    Article  PubMed  CAS  Google Scholar 

  26. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK (1996) p22phoxis a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells.J Biol Chem271 (38): 23317–23321

    Article  PubMed  CAS  Google Scholar 

  27. Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK (1998) Role of NADI-IINADPH oxidase-derived H2O2in angiotensin II-induced vascular hypertrophy.Hypertension32 (3): 488–495

    Article  PubMed  CAS  Google Scholar 

  28. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts.Science275 (5306): 1649–1652

    Article  PubMed  CAS  Google Scholar 

  29. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis.Nature389 (6648): 300–305

    Article  PubMed  CAS  Google Scholar 

  30. Babior BM (1997) Superoxide: a two-edged sword.Braz J Med Biol Res30 (2): 141–155

    Article  PubMed  CAS  Google Scholar 

  31. Theroux P (1999) Protection of the myocardial cell during ischemia.Am J Cardiol83 (l0A): 3G–9G

    Article  PubMed  CAS  Google Scholar 

  32. Flaherty JT, Zweier JL (1991) Role of oxygen radicals in myocardial reperfusion injury: experimental and clinical evidence.Klin Wochenschr69 (21–23): 1061–1065

    Article  PubMed  CAS  Google Scholar 

  33. Zweier JL, Kuppusamy P, Lutty GA (1988) Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues.Proc Natl Acad Sci USA85 (11): 4046–4050

    Article  PubMed  CAS  Google Scholar 

  34. Petrone WF, English DK, Wong K, McCord JM (1980) Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma.Proc Natl Acad Sci USA77 (2): 1159–1163

    Article  CAS  Google Scholar 

  35. Suzuki M, Inauen W, Kvietys PR, Grisham MB, Meininger C, Schelling ME, Granger HJ, Granger DN (1989) Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions.Am J Physiol257 (5 Pt 2): H1740–H1745

    PubMed  CAS  Google Scholar 

  36. Fraticelli A, Serrano CV Jr, Bochner BS, Capogrossi MC, Zweier JL (1996) Hydrogen peroxide and superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion.Biochim Biophys Acta1310 (3): 251–259

    Article  PubMed  Google Scholar 

  37. Serrano CV Jr, Mikhail EA, Wang P, Noble B, Kuppusamy P, Zweier JL (1996) Superoxide and hydrogen peroxide induce CD18-mediated adhesion in the postischemic heart.Biochim Biophys Acta1316 (3): 191–202

    Article  PubMed  Google Scholar 

  38. Haught WH, Mansour M, Rothlein R, Kishimoto TK, Mainolfi EA, Hendricks JB, Hendricks C, Mehta JL (1996) Alterations in circulating intercellular adhesion molecule-1 and L-selectin: further evidence for chronic inflammation in ischemic heart disease.Am Heart J132 (1 Pt 1): 1–8

    Article  PubMed  CAS  Google Scholar 

  39. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.FASEB J9 (10): 899–909

    PubMed  CAS  Google Scholar 

  40. Cross SL, Halden NF, Lenardo MJ, Leonard WJ (1989) Functionally distinct NF-kappa B binding sites in the immunoglobulin kappa and IL-2 receptor alpha chain genes.Science244 (4903): 466–469

    Article  PubMed  CAS  Google Scholar 

  41. Brand K, Page S, Rogler G, Bartsch A, Brandt R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D (1996) Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion.J Clin Invest97 (7): 1715–1722

    Article  PubMed  CAS  Google Scholar 

  42. Bourcier T, Sukhova G, Libby P (1997) The nuclear factor kappa-B signaling pathway participates in dysregulation of vascular smooth muscle cellsin vitroand in human atherosclerosis.J Biol Chem272 (25): 15817–15824

    Article  PubMed  CAS  Google Scholar 

  43. Flohe L, Brigelius-Flohe R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-kappa B activation.Free Radic Biol Med22 (6): 1115–1126

    Article  PubMed  CAS  Google Scholar 

  44. Zweier JL, Broderick R, Kuppusamy P, Thompson-Gorman S, Lutty GA (1994) Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation.J Biol Chem269 (39): 24156–24162

    PubMed  CAS  Google Scholar 

  45. White CR, Darley-Usmar V, Berrington WR, McAdams M, Gore JZ, Thompson JA, Parks DA, Tarpey MM, Freeman BA (1996) Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits.Proc Natl Acad Sci USA93 (16): 8745–8749

    Article  PubMed  CAS  Google Scholar 

  46. Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Cat+/calmodulin-dependent and tetrahydrobiopterin regulatory process.]Biol Chem273 (40): 25804–25808

    Article  CAS  Google Scholar 

  47. Pritchard KA Jr, Groszek L, Smalley DM, Sessa WC, Wu M, Villalon P, Wolin MS, Ste-merman MB (1995) Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation superoxide anion.Cir Res77 (3): 510–518

    Article  CAS  Google Scholar 

  48. Xia Y, Roman LJ, Masters BS, Zweier JL (1998) Inducible nitric-oxide synthase gener-ates superoxide from the reductase domain.J Biol Chem273 (35): 22635–22639

    Article  PubMed  CAS  Google Scholar 

  49. Xia Y, Zweier JL (1997) Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages.Proc Nail Acad Sci USA94 (13): 6954–6958

    Article  CAS  Google Scholar 

  50. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinasesin vitro. J Clin Invest98 (11): 2572–2579

    Article  CAS  Google Scholar 

  51. Berk BC.(1999) Redox signals that regulate the vascular response to injury.Thromb Haemost82 (2): 810–817

    PubMed  CAS  Google Scholar 

  52. Souza HP, Laurindo FRM, Berlowitz CO, Zweier JL (1999) Vascular Superoxide Generation By An Enzymatic System Different From Neutrophil NADPH Oxidase.Circulation100 (18 Suppl I): 362

    Google Scholar 

  53. Mohazzab KM, Kaminski PM, Wolin MS (1994) NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium.Am J Physiol266 (6 Pt 2): H2568–H2572

    PubMed  CAS  Google Scholar 

  54. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells.Am J Physiol271 (4 Pt 2): H1626–H1634

    PubMed  CAS  Google Scholar 

  55. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1.Nature401 (6748): 79–81

    Article  PubMed  CAS  Google Scholar 

  56. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q 4th, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats.Circ Res80 (1): 45–51

    Article  PubMed  CAS  Google Scholar 

  57. Inoue N, Kawashima S, Kanazawa K, Yamada S, Akita H, Yokoyama M (1998) Polymorphism of the NADH/NADPH oxidase p22 phox gene in patients with coronary artery disease.Circulation97 (2): 135–137

    Article  PubMed  CAS  Google Scholar 

  58. Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, Itoh H, Yokoyama M (1999) Expression of NADH/NADPH oxidase p22phox in human coronary arteries.Circulation100 (14): 1494–1498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Souza, H.P., Zweier, J.L. (2001). Free radicals as mediators of inflammation in atherosclerosis. In: Mehta, J.L. (eds) Inflammatory and Infectious Basis of Atherosclerosis. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8239-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8239-2_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9487-6

  • Online ISBN: 978-3-0348-8239-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics