Skip to main content

Inflammation in coronary atherosclerosis - pathological aspects

  • Chapter
Inflammatory and Infectious Basis of Atherosclerosis

Part of the book series: Progress in Inflammation Research ((PIR))

  • 98 Accesses

Abstract

Inflammation is an important mechanism in the initiation and progression of a developing atherosclerotic plaque [1-3]. The first cell to adhere to the intact endothelium is the circulating monocyte, which eventually migrates between endothelial cells, locates itself in the subendothelial space, and transforms into the foamy macrophage through the ingestion of lipids. The recruitment of macrophages within the intima is governed by a myriad of adhesion molecules, chemotactic agents, growth factors, and cytokines, all critical to the induction of atherosclerosis. The processes by which lipids accumulate and recruit inflammatory cells to sites of predilection for coronary atherosclerosis are under intense investigation. In addition, the possibility of infectious agents as initiators of coronary inflammation is also currently being explored [1]. The purpose of this review is to focus on the pathological aspects of inflammation in the coronary atherosclerotic plaque. Because the role of inflammation varies as a function of the stage and type of atherosclerotic plaque, the inflammatory milieu will be considered in context of plaque progression; early intimai thickening to complex symptomatic lesions that may be fatal. Plaques will be classified according the terminology of our recent review [4]; conventional definitions provided by the American Heart Association (AHA) classification [5,6] will also be stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mehta JL, Saldeen TG, Rand K (1998) Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol 31: 1217–1225

    Article  PubMed  CAS  Google Scholar 

  2. Whicher J, Biasucci L, Rifai N (1999) Inflammation, the acute phase response and ath-erosclerosis. Clin Chem Lab Med 37: 495–503

    Article  PubMed  CAS  Google Scholar 

  3. Zhou J, Chew M, Ravn HB, Falk E (1999) Plaque pathology and coronary thrombosis in the pathogenesis of acute coronary syndromes. Scand J Clin Lab Invest (Suppl) 230: 3–11

    CAS  Google Scholar 

  4. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: A comprehensive morphologic classification scheme for atherosclerotic lesions. Atheroscler Thromb Vase Biol 20: 1262–1275

    Article  CAS  Google Scholar 

  5. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 14: 840–856

    Article  PubMed  CAS  Google Scholar 

  6. Stary HC, Chandler AB, Dinsmore RE, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15: 1512–1531

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz SM, deBlois D, O’Brien ER (1995) The intima. Soil for atherosclerosis and restenosis. Circ Res 77: 445–465

    Article  PubMed  CAS  Google Scholar 

  8. Ikari Y, McManus BM, Kenyon J, Schwartz SM (1999) Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol 19: 2036–2040

    Article  PubMed  CAS  Google Scholar 

  9. Libby P, Hansson GK (1991) Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 64: 5–15

    PubMed  CAS  Google Scholar 

  10. McCaffrey TA, Du B, Consigli S, Szabo P, Bray PJ, Hartner L, Weksler BB, Sanborn TA, Bergman G, Bush HL Jr et al (1997) Genomic instability in the type II TGF-betal receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 100: 2182–2188

    Article  PubMed  CAS  Google Scholar 

  11. Chatterjee SB, Dey S, Shi WY, Thomas K, Hutchins GM (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7: 57–65

    Article  PubMed  CAS  Google Scholar 

  12. Velican D, Velican C (1980) Atherosclerotic involvement of the coronary arteries of adolescents and young adults. Atherosclerosis 36: 449–460

    Article  PubMed  CAS  Google Scholar 

  13. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP 3rd, Herderick EE, Cornhill JF (1999) Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. Jama 281: 727–735

    Article  PubMed  CAS  Google Scholar 

  14. Stary HC (1987) Macrophages, macrophage foam cells, and eccentric intimai thickening in the coronary arteries of young children. Atherosclerosis 64: 91–108

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P (1993) An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 13: 197–204

    Article  PubMed  Google Scholar 

  16. Richardson M, Kurowska EM, Carroll KK (1994) Early lesion development in the aor-tas of rabbits fed low-fat, cholesterol-free, semipurified casein diet. Atherosclerosis 107: 165–178

    Article  PubMed  CAS  Google Scholar 

  17. O’Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, McCarty J, Ferguson M, Hudkins K, Benjamin CD et al (1993) Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92: 945–951

    Article  PubMed  Google Scholar 

  18. Davies MJ, Gordon JL, Gearing AJ, Piyott R, Woolf N, Katz D, Kyriakopoulos A (1993) The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E- selectin in human atherosclerosis. J Pathol 171: 223–229

    Article  PubMed  CAS  Google Scholar 

  19. O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE (1996) Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimai leukocyte content. Circulation 93: 672–682

    Article  PubMed  Google Scholar 

  20. Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoEdeficient mouse. Arterioscler Thromb Vasc Biol 18: 842–851

    Article  PubMed  CAS  Google Scholar 

  21. Allen S, Khan S, Al-Mohanna F, Batten P, Yacoub M (1998) Native low density lipoprotein-induced calcium transients trigger VCAM- 1 and E-selectin expression in cultured human vascular endothelial cells. J Clin Invest 101: 1064–1075

    Article  PubMed  CAS  Google Scholar 

  22. Couffinhal T, Duplaa C, Moreau C, Lamaziere JM, Bonnet J (1994) Regulation of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular smooth muscle cells. Circ Res 74: 225–234

    Article  PubMed  CAS  Google Scholar 

  23. Khan BV, Parthasarathy SS, Alexander RW, Medford RM (1995) Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 95: 1262–1270

    Article  PubMed  CAS  Google Scholar 

  24. Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr (1994) Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94: 885–891

    Article  PubMed  CAS  Google Scholar 

  25. Allen S, Khan S, Tam S, Koschinsky M, Taylor P, Yacoub M (1998) Expression of adhesion molecules by 1p(a): a potential novel mechanism for its atherogenicity. Faseb J 12: 1765–1776

    PubMed  CAS  Google Scholar 

  26. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D et al (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96: 1395–1403

    Article  PubMed  CAS  Google Scholar 

  27. Printseva O, Peclo MM, Gown AM (1992) Various cell types in human atherosclerotic lesions express ICAM-1. Further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3. Am J Pathol 140: 889–896

    PubMed  Google Scholar 

  28. Truskey GA, Herrmann RA, Kait J, Barber KM (1999) Focal increases in vascular cell adhesion molecule-1 and intimal macrophages at atherosclerosis-susceptible sites in the rabbit aorta after short-term cholesterol feeding. Arterioscler Thromb Vasc Biol 19: 393–401

    Article  PubMed  CAS  Google Scholar 

  29. Peter K, Nawroth P, Conradt C, Nordt T, Weiss T, Boehme M, Wunsch A, Allenberg J, Kubler W, Bode C et al (1997) Circulating vascular cell adhesion molecule-1 correlates with the extent of human atherosclerosis in contrast to circulating intercellular adhesion molecule-1, E-selectin, P-selectin, and thrombomodulin. Arterioscler Thromb Vasc Biol 17: 505–512

    Article  PubMed  CAS  Google Scholar 

  30. Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM, Boerwinkle E (1997) Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 96: 4219–4225

    Article  PubMed  CAS  Google Scholar 

  31. Wang J, Wang S, Lu Y, Weng Y, Gown AM (1994) GM-CSF and M-CSF expression is associated with macrophage proliferation in progressing and regressing rabbit atheromatous lesions. Exp Mol Pathol 61: 109–118

    Article  PubMed  CAS  Google Scholar 

  32. Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, Imes S., Fishbein MC, Clinton SK, Libby P et al (1997) Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 150: 1687–1699

    PubMed  CAS  Google Scholar 

  33. Evanko SP, Raines EW, Ross R, Gold LI, Wight TN (1998) Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 152: 533–546

    PubMed  CAS  Google Scholar 

  34. Virchow R (ed) (1858) Cellular pathology based on physiological and pathological histology. Alabama: Classics of Medicine Library, Birmingham

    Google Scholar 

  35. Guyton JR, Klemp KF (1996) Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol 16: 4–11

    Article  PubMed  CAS  Google Scholar 

  36. Kruth HS (1997) Cholesterol deposition in atherosclerotic lesions. Subcell Biochem 28: 319–362

    Article  PubMed  CAS  Google Scholar 

  37. Tangirala RK, Jerome WG, Jones NL, Small DM, Johnson WJ, Glick JM, Mahlberg FH, Rothblat GH (1994) Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res 35: 93–104

    PubMed  CAS  Google Scholar 

  38. Kruth HS (1984) Localization of unesterified cholesterol in human atherosclerotic lesions. Am J Pathol 114: 201–208

    PubMed  CAS  Google Scholar 

  39. Burke AP, Farb A, Malcom GT, Liang Y-H, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in patients with coronary disease dying suddenly. N Engl J Med 336: 1276–1282

    Article  PubMed  CAS  Google Scholar 

  40. Farb A, Weber DK, Burke AP, Kolodgie F, Virmani R (1999) Morphology of stenosis progression and rupture in saphenous vein bypass grafts (abstract). Circulation 100: 1599

    Google Scholar 

  41. Hansson GK, Holm J, Jonasson L (1989) Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 135: 169–175

    PubMed  CAS  Google Scholar 

  42. Schonbeck U, Mach F, Bonnefoy JY, Loppnow H, Flad HD, Libby P (1997) Ligation of CD40 activates interleukin Ibeta-converting enzyme (caspase-1) activity in vascular smooth muscle and endothelial cells and promotes elaboration of active interleukin 1beta. J Biol Chem 272: 19569–19574

    Article  PubMed  CAS  Google Scholar 

  43. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394: 200–203

    Article  PubMed  CAS  Google Scholar 

  44. Mach F, Schonbeck U, Bonnefoy JY, Pober JS, Libby P (1997) Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 96: 396–399

    Article  PubMed  CAS  Google Scholar 

  45. Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE, Flavell RA (1999) Requirement for CD154 in the progression of atherosclerosis. Nat Med 5: 1313–1316

    Article  PubMed  CAS  Google Scholar 

  46. Milei J, Parodi JC, Fernandez Alonso G, Barone A, Beigelman R, Ferreira LM, Arrigoni G, Mattussi L (1996) Carotid atherosclerosis. Immunocytochemical analysis of the vascular and cellular composition in endarterectomies. Cardiologia 41: 535–542

    PubMed  CAS  Google Scholar 

  47. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, Virmani R (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93: 1354–1363

    Article  PubMed  CAS  Google Scholar 

  48. Hansson GK, Jonasson L, Holm J, Clowes MM, Clowes AW (1988) Gamma-interferon regulates vascular smooth muscle proliferation and la antigen expression in vivo and in vitro. Circ Res 63: 712–719

    Article  PubMed  CAS  Google Scholar 

  49. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89: 36–44

    Article  PubMed  Google Scholar 

  50. Burke AP, Kolodgie F, Farb A, Liang Y-H, Malcom G, Virmani R (1999) Macrophage density within the fibrous cap correlates with the etiology of thrombus, diabetes, and serum cholesterol. J Am Coll Cardiol 33: 323A

    Google Scholar 

  51. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Ameto E, Libby P (1994) Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75: 181–189

    Article  PubMed  CAS  Google Scholar 

  52. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493–2503

    Article  PubMed  CAS  Google Scholar 

  53. Fabunmi RP, Baker AH, Murray EJ, Booth RF, Newby AC (1996) Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1, -2, and - 3 in rabbit aortic smooth muscle cells. Biochem J 315: 335–342

    PubMed  CAS  Google Scholar 

  54. Sasaguri T, Arima N, Tanimoto A, Shimajiri S, Hamada T, Sasaguri Y (1998) A role for interleukin 4 in production of matrix metalloproteinase 1 by human aortic smooth muscle cells. Atherosclerosis 138: 247–253

    Article  PubMed  CAS  Google Scholar 

  55. Lee E, Grodzinsky AJ, Libby P, Clinton SK, Lark MW, Lee RT (1995) Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture. Arterioscler Thromb Vasc Biol 15: 2284–2289

    Article  PubMed  CAS  Google Scholar 

  56. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92: 1565–1569

    PubMed  CAS  Google Scholar 

  57. Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, Libby P (1999) Evidence for increased collagenolysis by interstitial collagenases-1 and 13 in vulnerable human atheromatous plaques. Circulation 99: 2503–2509

    Article  PubMed  CAS  Google Scholar 

  58. Sugiyama S, Okada Y, Sukhova GK, Heinecke JW, Virmani R, Libby P (1998) A distinct proinflammatory subpopulation of macrophages in human atherosclerosis (abstract). Circulation 98: 1–315

    Article  Google Scholar 

  59. Haze11 LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 97: 1535–1544

    Article  PubMed  CAS  Google Scholar 

  60. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157: 1259–1268

    Article  PubMed  CAS  Google Scholar 

  61. Bjorkerud S, Bjorkerud B (1996) Apopotosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells) and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 149: 367–380

    PubMed  CAS  Google Scholar 

  62. Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82: 265–268

    PubMed  CAS  Google Scholar 

  63. Burke A, Farb A, Kolodgie FD, Malcom GT, Virmani R (1997) Healed plaque ruptures are frequent in men with severe coronary disease and are associated with elevated total/high density lipoprotein (HDL) cholesterol. Circulation 96: SI-235

    Google Scholar 

  64. Geary RL, Nikkari ST, Wagner WD, Williams JK, Adams MR, Dean RH (1998) Wound healing: a paradigm for lumen narrowing after arterial reconstruction. J Vasc Surg 27: 96–106; discussion -108

    Article  PubMed  CAS  Google Scholar 

  65. Courtman DW, Schwartz SM, Hart CE (1998) Sequential injury of the rabbit abdominal aorta induces intramural coagulation and luminal narrowing independent of intimal mass: extrinsic pathway inhibition eliminates luminal narrowing. Circ Res 82: 996–1006

    Article  PubMed  CAS  Google Scholar 

  66. Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94: 2013–2020

    Article  PubMed  CAS  Google Scholar 

  67. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 16: 1371–1375

    Article  Google Scholar 

  68. Taylor AJ, Yousefi P, Malcom GT, Smialek J, Virmani J (1999) Arterial remodeling in the left coronary system: the role of high-density lipoprotein cholesterol. J Am Coll Cardiol. 34: 760–767

    Article  PubMed  CAS  Google Scholar 

  69. Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P (1999) Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 99: 96–104

    Article  PubMed  CAS  Google Scholar 

  70. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102: 576–583

    Article  PubMed  CAS  Google Scholar 

  71. Freestone T, Turner RJ, Higman DJ, Lever MJ, Powell JT (1997) Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vasc Biol 17: 10–17

    Article  PubMed  CAS  Google Scholar 

  72. Seo HS, Lombardi DM, Polinsky P, Powell-Braxton L, Bunting S, Schwartz SM, Rosenfeld ME (1997) Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation. Arterioscler Thromb Vasc Biol 17: 3593–3601

    Article  PubMed  CAS  Google Scholar 

  73. Andersen HR, Maeng M, Thorwest M, Falk E (1996) Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation 93: 1716–1724

    Article  PubMed  CAS  Google Scholar 

  74. Kakuta T, Usui M, Coats WD Jr, Currier JW, Numano F, Faxon DP (1998) Arterial remodeling at the reference site after angioplasty in the atherosclerotic rabbit model. Arterioscler Thromb Vasc Biol 18: 47–51

    Article  PubMed  CAS  Google Scholar 

  75. Katsumata N, Shimokawa H, Seto M, Kozai T, Yamawaki T, Kuwata K, Egashira K, Ikegaki I, Asano T, Sasaki Y et al (1997) Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukinlbeta. Circulation 96: 4357–4363

    Article  PubMed  CAS  Google Scholar 

  76. Kohchi K, Takebayashi S, Hiroki T, Nobuyoshi M (1985) Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy. Circulation 71: 709–716

    Article  PubMed  CAS  Google Scholar 

  77. Schinke T, McKee MD, Kiviranta R, Karsenty G (1998) Molecular determinants of arterial calcification. Ann Med 30: 538–541

    PubMed  CAS  Google Scholar 

  78. Kockx MM, Herman AG (1998) Apoptosis in atherogenesis: implications for plaque destabilization. Eur Heart J 19 (Suppl) G: G23–G28

    Google Scholar 

  79. Parhami F, Bostrom K, Watson K, Demer LL (1996) Role of molecular regulation in vascular calcification. J Atheroscler Thromb 3: 90–94

    PubMed  CAS  Google Scholar 

  80. Shanahan CM, Proudfoot D, Farzaneh-Far A, Weissberg PL (1998) The role of Gla proteins in vascular calcification. Crit Rev Eukaryot Gene Expr 8: 357–375

    Article  PubMed  CAS  Google Scholar 

  81. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93: 2393–2402

    Article  PubMed  CAS  Google Scholar 

  82. Bini A, Mann KG, Kudryk BJ, Schoen FJ (1999) Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. Arterioscler Thromb Vasc Biol 19: 1852–1861

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Virmani, R., Kolodgie, F.D., Burke, A.P., Farb, A. (2001). Inflammation in coronary atherosclerosis - pathological aspects. In: Mehta, J.L. (eds) Inflammatory and Infectious Basis of Atherosclerosis. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8239-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8239-2_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9487-6

  • Online ISBN: 978-3-0348-8239-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics