Skip to main content

Atherosclerosis: an Inflammatory Disease

  • Chapter

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Cellular processes in atherogenesis with the exception of calcification and thrombotic events are principally no different to those found in chronic inflammatoryfibroproliferative diseases such as liver cirrhosis, rheumatoid arthritis, glomerulosclerosis, pulmonary fibrosis, or chronic pancreatitis [1]. Atherosclerotic lesions are the result of a series of highly specific cellular and molecular responses to various endogenous risk factors and potential exogenous antigens. These responses are mediated by endothelial cells, monocyte-derived macrophages, smooth muscle cells and specific subtypes of T lymphocytes. Activation of these cells leads to the release of a wide spectrum of inflammatory hydrolases, cytokines, chemokines and growth factors followed by cellular lipid accumulation and proliferation of smooth muscle cells as well as formation of fibrous tissue [2]. The modified response-to-injury hypothesis of atherosclerosis that emphasizes endothelial dysfunction rather than denudation as the first step in atherosclerosis [1] was recently extended suggesting that the key initiating event in early atherosclerosis is the subendothelial retention of cholesterol-rich, atherogenic lipoproteins bound to arterial proteoglycans (response-to-retention hypothesis) [3]. Following adherence to endothelial cells, defined subpopulations of circulating monocytes that express the lipopolysaccharide (LPS) receptor CD14 and the FcyRIII/CD16 (CD14bright CD16) might extravasate into the subendothelial space [4-6]. Within the vessel wall phagocytic monocytes rapidly transform to foam cells characterized by the excessive uptake of atherogenic lipoproteins by receptor-mediated endocytosis. Cellular uptake of these lipids and lipoproteins is mediated by charge and motif receptors (scavenger receptors) directly recognizing non-opsonized ligands. Alternatively, modified lipids and lipoproteins may be opsonized by either innate (complement components, C-reactive protein (CRP), serum amyloid P (SAP), serum amyloid A (SAA)) and/or specific opsonins (immunoglobulins) prior to cellular uptake mediated by different opsonin receptors including complement receptors, pentraxin family receptors and/or Fcy-receptors. Continuous exposure to modified lipoproteins is supposed to trigger a chronic identification of the opsonins and opsonin receptors relevant for cellular uptake and signalling represent important goals in cardiovascular disease research, in particular with respect to the development of therapeutic strategies to prevent or reverse lipoprotein modification or opsonization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R (1999) Atherosclerosis -an inflammatory disease.N Engl J Med340: 115–126

    Article  PubMed  CAS  Google Scholar 

  2. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull WJ, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.Circulation89: 2462–2478

    Article  PubMed  CAS  Google Scholar 

  3. Williams KJ, Tabas I (1998) The response-to-retention hypothesis of atherogenesis rein-forced.Curr Opin Lipidol9: 471–474

    Article  PubMed  CAS  Google Scholar 

  4. Rothe G, Gabriel H, Kovacs E, Klucken J, Stohr J, Kindermann W, Schmitz G (1996) Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia.Arterioscler Thromb Vasc Biol16: 1437–1447

    Article  PubMed  CAS  Google Scholar 

  5. Stohr J, Schindler G, Rothe G, Schmitz G (1998) Enhanced upregulation of the Fcgamma receptor IIIa (CD16a) duringin vitrodifferentiation of ApoE4l4 monocytes.Arterioscler Thromb Vasc Biol18: 1424–1432

    Article  PubMed  CAS  Google Scholar 

  6. Rothe G, Herr AS, Stohr J, Abletshauser C, Weidinger G, Schmitz G (1999) A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease [In Process Citation].Atherosclerosis144: 251–261

    Article  PubMed  CAS  Google Scholar 

  7. Schmitz G, Orso E, Rothe G, Klucken J (1997) Scavenging, signalling and adhesion cou-pling in macrophages: implications for atherogenesis.Curr Opin Lipidol8: 287–300

    Article  PubMed  CAS  Google Scholar 

  8. Torzewski J, Torzewski M, Bowyer DE, Frohlich M, Koenig W, Waltenberger J, Fitzsimmons C, Hornbach V (1998) C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries.Arterioscler Thromb Vasc Biol18: 1386–1392

    Article  PubMed  CAS  Google Scholar 

  9. Seifert PS, Hugo F, Tranum-Jensen J, Zahringer U, Muhly M, Bhakdi S (1990) Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions.J Exp Med172: 547–557

    Article  PubMed  CAS  Google Scholar 

  10. Torzewski J, Oldroyd R, Lachmann P, Fitzsimmons C, Proudfoot D, Bowyer D (1996) Complement-induced release of monocyte chemotactic protein-1 from human smooth muscle cells. A possible initiating event in atherosclerotic lesion formation.Arterioscler Thromb Vasc Biol16: 673–677

    Article  PubMed  CAS  Google Scholar 

  11. Steinberg D (1997) Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis.Circulation95: 1062–1071

    Article  PubMed  CAS  Google Scholar 

  12. Tabas I (1999) Nonoxidative modifications of lipoproteins in atherogenesis.Annu Rev Nutr19: 123–139

    Article  PubMed  CAS  Google Scholar 

  13. Lopes-Virella MF, Klein RL, Virella G (1996) Modification of lipoproteins in diabetes.Diabetes Metab Rev12: 69–90

    PubMed  CAS  Google Scholar 

  14. Vijayagopal P, Glancy DL (1996) Macrophages stimulate cholesteryl ester accumulation in cocultured smooth muscle cells incubated with lipoprotein-proteoglycan complex.Arterioscler Thromb Vase Biol16: 1112–1121

    Article  CAS  Google Scholar 

  15. Vijayagopal P, Srinivasan SR, Radhakrishnamurthy B, Berenson GS (1993) Human monocyte-derived macrophages bind low-density-lipoprotein-proteoglycan complexes by a receptor different from the low-density-lipoprotein receptor.Biochem J289 (Pt 3): 837–844

    PubMed  CAS  Google Scholar 

  16. Schiering A, Menschikowski M, Mueller E, Jaross W (1999) Analysis of secretory group II phospholipase A2 expression in human aortic tissue in dependence on the degree of atherosclerosis.Atherosclerosis144: 73–78

    Article  PubMed  CAS  Google Scholar 

  17. Oorni K, Hakala JK, Annila A, Ala-Korpela M, Kovanen PT (1998) Sphingomyelinase induces aggregation and fusion, but phospholipase A2 only aggregation, of low density lipoprotein (LDL) particles. Two distinct mechanisms leading to increased binding strength of LDL to human aortic proteoglycans.J Biol Chem273: 29127–29134

    Article  PubMed  CAS  Google Scholar 

  18. Suits AG, Chait A, Aviram M, Heinecke JW (1989) Phagocytosis of aggregated lipoprotein by macrophages: low density lipoprotein receptor-dependent foam-cell formation.Proc Natl Acad Sci USA86: 2713–2717

    Article  PubMed  CAS  Google Scholar 

  19. Aviram M, Maor I, Keidar S, Hayek T, Oiknine J, Bar-El Y, Adler Z, Kertzman V, Milo S (1995) Lesioned low density lipoprotein in atherosclerotic apolipoprotein E- deficient transgenic mice and in humans is oxidized and aggregated.Biochem Biophys Res Commun216: 501–513

    Article  PubMed  CAS  Google Scholar 

  20. Bhakdi S, Dorweiler B, Kirchmann R, Torzewski J, Weise E, Tranum-Jensen J, Walev I, Wieland E (1995) On the pathogenesis of atherosclerosis: enzymatic transformation of human low density lipoprotein to an atherogenic moiety.J Exp Med182: 1959–1971

    Article  PubMed  CAS  Google Scholar 

  21. Frank JS, Fogelman AS (1989) Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching.J Lipid Res30: 967–978

    PubMed  CAS  Google Scholar 

  22. Torzewski M, Klouche M, Hock J, Messner M, Dorweiler B, Torzewski J, Gabbert HE, Bhakdi S (1998) Immunohistochemical demonstration of enzymatically modified human LDL and its colocalization with the terminal complement complex in the early atherosclerotic lesion.Arterioscler Thromb Vase Biol18: 369–378

    Article  CAS  Google Scholar 

  23. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response.Science272: 50–53

    Article  PubMed  CAS  Google Scholar 

  24. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group.Lancet349: 462–466

    Article  PubMed  CAS  Google Scholar 

  25. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation,aspirin, and the risk of cardiovascular disease in apparently healthy men.N Engl J Med336:973–979 [published erratum appears inN Engl J Med 337(S): 356]

    Article  PubMed  CAS  Google Scholar 

  26. Wolbink GJ, Brouwer MC, Buysmann S, Ten B, Hack CE (1996) CRP-mediated activation of complement in vivo: assessment by measuring circulating complement-C-reactive protein complexes. J Immunol 157: 473–479

    PubMed  CAS  Google Scholar 

  27. Pepys MB, Rowe IF, Baltz ML (1985) C-reactive protein: binding to lipids and lipoproteins. Int Rev Exp Pathol 27: 83–111

    PubMed  CAS  Google Scholar 

  28. Whisler RL, Proctor VK, Downs EC, Mortensen RF (1986) Modulation of human monocyte chemotaxis and procoagulant activity by human C-reactive protein (CRP). Lymphokine Res 5:223–228

    PubMed  CAS  Google Scholar 

  29. Bhakdi S (1998) Complement and atherogenesis: the unknown connection [editorial]. Ann Med 30: 503–507

    Article  PubMed  CAS  Google Scholar 

  30. Marnell LL, Mold C, Volzer MA, Burlingame RW, DuClos T (1995) C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol 155:2185–2193

    PubMed  CAS  Google Scholar 

  31. Bharadwaj D, Stein MP, Volzer M, Mold C, DuClos T (1999) The major receptor for C-reactive protein on leukocytes is fcgamma receptorll. J Exp Med 190: 585–590

    Article  PubMed  CAS  Google Scholar 

  32. Tebo JM, Mortensen RF (1990) Characterization and isolation of a C-reactive protein receptor from the human monocytic cell line U-937. J Immunol 144: 231–238

    PubMed  CAS  Google Scholar 

  33. Mortensen RF, Zhong W. Regulation of phagocytic activities by C-reactive protein. J Leukocyte Biol; in press

    Google Scholar 

  34. Li XA, Hatanaka K, Ishibashi-Ueda H, Yutani C, Yamamoto A (1995) Characterization of serum amyloid P component from human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 15: 252–257

    Article  PubMed  CAS  Google Scholar 

  35. Hicks PS, Saunero-Nava L, Du CT, Mold C (1992) Serum amyloid P component binds to histones and activates the classical complement pathway. J Immunol 149: 3689–3694

    PubMed  CAS  Google Scholar 

  36. Siripont J, Tebo JM, Mortensen RF (1988) Receptor-mediated binding of the acute-phase reactant mouse serum amyloid P-component (SAP) to macrophages. Cell Immunol 117: 239–252

    Article  PubMed  CAS  Google Scholar 

  37. Muda T, Yamada T, Yamadera T, Ozaki K, Inano K, Okada M (1999) Serum amyloid A protein generates prebetal high-density lipoprotein from alpha-migrating high-density lipoprotein. Biochemistry 38: 16958–16962

    Article  CAS  Google Scholar 

  38. Uhlar CM, Whitehead AS (1999) Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 265: 501–523

    Article  PubMed  CAS  Google Scholar 

  39. Meek RL, Urieli-Shoval S, Benditt EP (1994) Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid A function. Proc Natl Acad Sci USA 91: 3186–3190

    Article  PubMed  CAS  Google Scholar 

  40. Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ, Wang JM (1999) A seventransmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med 189: 395–402

    Article  PubMed  CAS  Google Scholar 

  41. Alles V, Bottazzi B, Peri G, Golay J, Introna M, Mantovani A (1994) Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes.Blood84:3483–3493

    PubMed  CAS  Google Scholar 

  42. Alving CR, Wassef NM, Potter M (1996) Antibodies to cholesterol: biological implications of antibodies to lipids.Curr Top Microbiol Immunol210: 181–186

    Article  PubMed  CAS  Google Scholar 

  43. Mironova M, Virella G, Lopes-Virella MF (1996) Isolation and characterization of human antioxidized LDL autoantibodies.Arterioscler Thromb Vasc Biol16: 222–229 [published erratum appears inArterioscler Thromb Vasc Biol 17(10): 2306]

    Article  PubMed  CAS  Google Scholar 

  44. Lopes-Virella MF, Binzafar N, Rackley S, Takei A, La Via M, Virella G (1997) The uptake of LDL-IC by human macrophages: predominant involvement of the Fc gamma RI receptor.Atherosclerosis135: 161–170

    Article  PubMed  CAS  Google Scholar 

  45. Morganelli PM, Rogers RA, Kitzmiller TJ, Bergeron A (1995) Enhanced metabolism of LDL aggregates mediated by specific human monocyte IgG Fc receptors.J Lipid Res36: 714–724

    PubMed  CAS  Google Scholar 

  46. Bigler RD, Brown HM, Guyre PM, Lund-Katz S, Scerbo L, Esfahani M (1989) Effect of low-density lipoprotein on the expression of high affinity Fc gamma receptors.Biochim Biophys Acta1011: 102–104 [published erratum appears in Biochim Biophys Acta 1014 (3): 333]

    Article  PubMed  CAS  Google Scholar 

  47. Stanton LW, White RT, Bryant CM, Protter AA, Endemann G (1992) A macrophage Fc receptor for IgG is also a receptor for oxidized low density lipoprotein.J Biol Chem267: 22446–22451

    PubMed  CAS  Google Scholar 

  48. Morganelli PM, Groveman DS, Pfeiffer JR (1997) Evidence that human Fc gamma receptor IIA (CD32) subtypes are not receptors for oxidized LDL.Arterioscler Thromb Vasc Biol17: 3248–3254

    Article  PubMed  CAS  Google Scholar 

  49. Graham IL, Anderson DC, Holers VM, Brown EJ (1994) Complement receptor 3 (CR3, Mac-1, integrin alpha M beta 2, CD11b/CD18) is required for tyrosine phosphorylation of paxillin in adherent and nonadherent neutrophils.J Cell Biol127: 1139–1147

    Article  PubMed  CAS  Google Scholar 

  50. Zhong W, Zen Q, Tebo J, Schlottmann K, Coggeshall M, Mortensen RF (1998) Effect of human C-reactive protein on chemokine and chemotactic factor-induced neutrophil chemotaxis and signaling.J Immunol161: 2533–2540

    PubMed  CAS  Google Scholar 

  51. Sanchez-Mejorada G, Rosales C (1998) Signal transduction by immunoglobulin Fc receptors.J Leukoc Biol63: 521–533

    PubMed  CAS  Google Scholar 

  52. Melendez A, Floto RA, Gillooly DJ, Harnett MM, Allen JM (1998) FcgammaRl coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking.J Biol Chem273: 9393–9402

    Article  PubMed  CAS  Google Scholar 

  53. Gupta S (1999) Chronic infection in the aetiology of atherosclerosis -focus onChlamydia pneumoniae. Atherosclerosis143: 1–6

    Article  CAS  Google Scholar 

  54. Melnick SL, Shahar E, Folsom AR, Grayston JT, Sorlie PD, Wang SP, Szklo M (1993) Past infection byChlamydia pneumoniaestrain TWAR and asymptomatic carotid atherosclerosis. Atherosclerosis Risk in Communities (ARIC) Study Investigators. AmJ Med95: 499–504

    Article  PubMed  CAS  Google Scholar 

  55. McDonald K, Rector TS, Braulin EA, Kubo SH, Olivari MT (1989) Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. AmJ Cardio/64: 359–362

    Article  CAS  Google Scholar 

  56. Blasi F, Denti F, Erba M, Cosentini R, Raccanelli R, Rinaldi A, Fagetti L, Esposito G,Ruberti U, Allegra L (1996) Detection of Chlamydia pneumoniae but not Helicobacter pylori in atherosclerotic plaques of aortic aneurysms.J Clin Microbiol34: 2766–2769

    PubMed  CAS  Google Scholar 

  57. Kol A, Sperti G, Shani J, Schulhoff N, van de Greef W, Landini MP, La Placa M, Maseri A, Crea F (1995) Cytomegalovirus replication is not a cause of instability in unstable angina.Circulation91: 1910–1913

    Article  PubMed  CAS  Google Scholar 

  58. Linnanmaki E, Leinonen M, Mattila K, Nieminen MS, Valtonen V, Saikku P (1993) Chlamydia pneumoniae-specific circulating immune complexes in patients with chronic coronary heart disease.Circulation87: 1130–1134

    Article  PubMed  CAS  Google Scholar 

  59. Kuo CC, Shor A, Campbell LA, Fukushi H, Patton DL, Grayston JT (1993) Demonstration ofChlamydia pneumoniaein atherosclerotic lesions of coronary arteries.J Infect Dis167: 841–849

    Article  PubMed  CAS  Google Scholar 

  60. Munro JM, van der Walt JD, Munro CS, Chalmers JA, Cox EL (1987) An immunohistochemical analysis of human aortic fatty streaks.Hum Pathol18: 375–380

    Article  PubMed  CAS  Google Scholar 

  61. Wick G, Kleindienst R, Schett G, Amberger A, Xu Q (1995) Role of heat shock protein 65/60 in the pathogenesis of atherosclerosis.Int Arch Allergy Immunol107: 130–131

    Article  PubMed  CAS  Google Scholar 

  62. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein.Proc Natl Acad Sci USA92: 3893–3897

    Article  PubMed  CAS  Google Scholar 

  63. Kishikawa H, Shimokama T, Watanabe T (1993) Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, 1L-6 and TNF in human aortic intima. Role of cell-mediated immunity in human atherogenesis.Virchows Arch A Pathol Anat Histopathol423: 433–442

    Article  PubMed  CAS  Google Scholar 

  64. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK (1999) Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines.Atherosclerosis145: 33–43

    Article  PubMed  CAS  Google Scholar 

  65. Emeson EE, Shen ML, Bell CG, Qureshi A (1996) Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/nu) C57BL/6 hyperlipidemic mice. Am J Pathol 149: 675–685

    PubMed  CAS  Google Scholar 

  66. Dansky HM, Charlton SA, Harper MM, Smith JD (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse.Proc Natl Acad Sci USA94: 4642–4646

    Article  PubMed  CAS  Google Scholar 

  67. Schmitz G, Herr AS, Rothe G (1998) T-lymphocytes and monocytes in atherogenesis.Herz23: 168–177

    Article  PubMed  CAS  Google Scholar 

  68. Seko Y, Sato O, Takagi A, Tada Y, Matsuo H, Yagita H, Okumura K, Yazaki Y (1997) Perforin-secreting killer cell infiltration in the aortic tissue of patients with atherosclerotic aortic aneurysm.Jpn Circ J61: 965–970

    Article  PubMed  CAS  Google Scholar 

  69. Zhou X, Hansson GK (1999) Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice.Scand J Immunol50: 25–30

    Article  CAS  Google Scholar 

  70. Torzewski J, Bowyer DE, Waltenberger J, Fitzsimmons C (1997) Processes in atherogenesis: complement activation.Atherosclerosis132: 131–138

    Article  PubMed  CAS  Google Scholar 

  71. Schmiedt W, Kinscherf R, Deigner HP, Kamencic H, Nauen 0, Kilo J, Oelert H, Metz J, Bhakdi S (1998) Complement C6 deficiency protects against diet-induced atherosclerosis in rabbits.Arterioscler Thromb Vasc Biol18: 1790–1795

    Article  PubMed  CAS  Google Scholar 

  72. Torzewski M, Torzewski J, Bowyer DE, Waltenberger J, Fitzsimmons C, Hombach V, Gabbert HE (1997) Immunohistochemical colocalization of the terminal complex of human complement and smooth muscle cell alpha-actin in early atherosclerotic lesions.Arterioscler Thromh Vasc Biol17: 2448–2452

    Article  CAS  Google Scholar 

  73. Morgan BP (1992) Effects of the membrane attack complex of complement on nucleated cells.Curr Top Microbiol Immunol178: 115–140

    Article  PubMed  CAS  Google Scholar 

  74. Morgan BP (1999) Regulation of the complement membrane attack pathway.Crit Rev Immunol19: 173

    Article  PubMed  CAS  Google Scholar 

  75. Marschang P, Ebenbichler CF, Dierich MP (1994) HIV and complement: role of the complement system in HIV infection.Int Arch Allergy Immunol103: 113–117

    Article  PubMed  CAS  Google Scholar 

  76. Alving CR, Richards RL, Guirguis AA (1977) Cholesterol-dependent human complement activation resulting in damage to liposomal model membranes.J Immunol118: 342–347

    PubMed  CAS  Google Scholar 

  77. Vogt W, von Z, Damerau IB, Hesse D, Luhmann B, Nolte R (1985) Mechanisms of complement activation by crystalline cholesterol.Mol Immunol22: 101–106

    Article  PubMed  CAS  Google Scholar 

  78. Seifert PS, Hugo F, Hansson GK, Bhakdi S (1989) Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits.Lab Invest60: 747–754

    PubMed  CAS  Google Scholar 

  79. Bhakdi S, Torzewski M, Klouche M, Hemmes M (1999) Complement and atherogenesis: Binding of CRP to degraded, nonoxidized LDL enhances complement activation.Arterioscler Thromb Vasc Biol19: 2348–2354

    Article  PubMed  CAS  Google Scholar 

  80. Hall RT, Strugnell T, Wu X, Devine DV, Stiver HG (1993) Characterization of kinetics and target proteins for binding of human complement component C3 to the surface-exposed outer membrane ofChlamydiatrachomatis serovar L2.Infect Immun61: 1829–1834

    PubMed  CAS  Google Scholar 

  81. Weiner LM, Li W, Holmes M, Catalano RB, Dovnarsky M, Padavic K, Alpaugh RK (1994) Phase I trial of recombinant macrophage colony-stimulating factor and recombinant gamma-interferon: toxicity, monocytosis, and clinical effects.Cancer Res54: 4084–4090

    PubMed  CAS  Google Scholar 

  82. Schmid I, Baldwin GC, Jacobs EL, Isacescu V, Neagos N, Giorgi JV, Glaspy JA (1995) Alterations in phenotype and cell-surface antigen expression levels of human monocytes: differential response toin vivoadministration of rhM-CSF or rhGM-CSF.Cytometry22: 103–110

    Article  PubMed  CAS  Google Scholar 

  83. Vanham G, Edmonds K, Qing L, Horn D, Toossi Z, Jones B, Daley CL, Huebner B, Kestens L, Gigase P, Ellner JJ (1996) Generalized immune activation in pulmonary tuberculosis: co-activation with HIV infection.Clin Exp Immunol103: 30–34

    Article  PubMed  CAS  Google Scholar 

  84. Saleh MN, Goldman SJ, LoBuglio AF, Beall AC, Sabio H, McCord MC, Minasian L, Alpaugh RK, Weiner LM, Munn DH (1995) CD16’ monocytes in patients with cancer:spontaneous elevation and pharmacologic induction by recombinant human macrophage colony-stimulating factor.Blood85: 2910–2917

    PubMed  CAS  Google Scholar 

  85. Fingerle G, Pforte A, Passlick B, Blumenstein M, Strobel M, Ziegler-Heitbrock HW (1993) The novel subset of CD14`/CD16` blood monocytes is expanded in sepsis patients.Blood82: 3170–3176

    PubMed  CAS  Google Scholar 

  86. Nockher WA, Bergmann L, Scherberich JE (1994) Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients.Clin Exp Immunol98: 369–374

    Article  PubMed  CAS  Google Scholar 

  87. Allen JB, Wong HL, Guyre PM, Simon GL, Wahl SM (1991) Association of circulating receptor Fc gamma RIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-beta.J Clin Invest87: 1773–1779

    Article  PubMed  CAS  Google Scholar 

  88. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity.N Engl J Med8320: 915–924

    Google Scholar 

  89. Colles SM, Irwin KC, Chisolm GM (1996) Roles of multiple oxidized LDL lipids in cellular injury: dominance of 7 beta-hydroperoxycholesterol.J Lipid Res37: 2018–2028

    PubMed  CAS  Google Scholar 

  90. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition.Proc Natl Acad Sci USA76: 333–337

    Article  PubMed  CAS  Google Scholar 

  91. Boren J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL (1998) Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding.J Clin Invest101: 2658–2664

    Article  PubMed  CAS  Google Scholar 

  92. Schissel SL, Jiang X, Tweedie-Hardman J, Jeong T, Camejo EH, Najib J, Rapp JH, Williams KJ, Tabas I (1998) Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development.J Biol Chem273: 2738–2746

    Article  PubMed  CAS  Google Scholar 

  93. Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H (1993) Lipid advanced glycosylation: pathway for lipid oxidation in vivo.Proc Natl Acad Sci USA90: 6434–6438

    Article  PubMed  CAS  Google Scholar 

  94. Wang X, Bucala R, Milne R (1998) Epitopes close to the apolipoprotein B low density lipoprotein receptor-binding site are modified by advanced glycation end products.Proc Natl Acad Sci USA95: 7643–7647

    Article  PubMed  CAS  Google Scholar 

  95. Wen FQ, Jabbar AA, Patel DA, Kazarian T, Valentino LA (1999) Atherosclerotic aortic gangliosides enhance integrin-mediated platelet adhesion to collagen.Arterioscler Thromb Vasc Biol19: 519–524

    Article  PubMed  CAS  Google Scholar 

  96. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils.Nature343: 531–535

    Article  PubMed  CAS  Google Scholar 

  97. Rohrer L, Freeman M, Kodama T, Penman M, Krieger M (1990) Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II.Nature343: 570–572

    Article  PubMed  CAS  Google Scholar 

  98. Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A, Sariola H, Tryggvason K (1998) Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region.J Biol Chem273: 4530–4538

    Article  PubMed  CAS  Google Scholar 

  99. Acton SL, Scherer PE, Lodish HF, Krieger M (1994) Expression cloning of SR-BI, a CD36-related class B scavenger receptor.J Biol Chem269: 21003–21009

    PubMed  CAS  Google Scholar 

  100. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36.J Biol Chem268: 17665–17668

    PubMed  CAS  Google Scholar 

  101. Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D (1996) Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein.Proc Natl Acad Sci USA93: 14833–14838

    Article  PubMed  CAS  Google Scholar 

  102. Pearson A, Lux A, Krieger M (1995) Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster.Proc Natl Acad Sci USA92: 4056–4060

    Article  PubMed  CAS  Google Scholar 

  103. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T (1997) An endothelial receptor for oxidized low-density lipoprotein.Nature386: 73–77

    Article  PubMed  CAS  Google Scholar 

  104. Crowell RE, Du CT, Montoya G, Heaphy E, Mold C (1991) C-reactive protein receptors on the human monocytic cell line U-937. Evidence for additional binding to Fc gamma RI.J Immunol147: 3445–3451

    PubMed  CAS  Google Scholar 

  105. Seifert PS, Hansson GK (1989) Complement receptors and regulatory proteins in human atherosclerotic lesions.Arteriosclerosis9: 802–811

    Article  PubMed  CAS  Google Scholar 

  106. Netea MG, Demacker PN, Kullberg BJ, Boerman OC, Verschueren I, Stalenhoef AF, Van Der Meer JW (1998) Increased interleukin-lalpha and interleukin-1beta production by macrophages of low-density lipoprotein receptor knock-out mice stimulated with lipopolysaccharide is CD11c/CD18-receptor mediated.Immunology95: 466–472

    Article  PubMed  CAS  Google Scholar 

  107. Wu R, Lefvert AK (1995) Autoantibodies against oxidized low density lipoproteins (oxLDL): characterization of antibody isotype, subclass, affinity and effect on the macrophage uptake of oxLDL.Clin Exp Immunol102: 174–180

    Article  PubMed  CAS  Google Scholar 

  108. Mironova M, Virella G, Virella-Lowell I, Lopes-Virella MF (1997) Anti-modified LDL antibodies and LDL-containing immune complexes in IDDM patients and healthy controls.Clin Immunol Immunopathol85: 73–82

    Article  PubMed  CAS  Google Scholar 

  109. Szuwart T, Zhao B, Fritsch A, Mertens K, Dierichs R (1999) Oxidized low-density lipoprotein inhibits the binding of monoclonal antibody to platelet glycoprotein IIBIIIA.Thromb Res96: 85–90

    Article  PubMed  CAS  Google Scholar 

  110. Falcone DJ, Salisbury BG (1988) Fibronectin stimulates macrophage uptake of low density lipoprotein-heparin-collagen complexes.Arteriosclerosis8: 263–273

    Article  PubMed  CAS  Google Scholar 

  111. Hillis GS, Mlynski RA, Simpson JG, MacLeod AM (1998) The expression of beta 1 integrins in human coronary artery.Basic Res Cardiol93: 295–302

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Schmitz, G., Torzewski, M. (2001). Atherosclerosis: an Inflammatory Disease. In: Mehta, J.L. (eds) Inflammatory and Infectious Basis of Atherosclerosis. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8239-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8239-2_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9487-6

  • Online ISBN: 978-3-0348-8239-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics