Skip to main content

Nonlinear Boundary Control for the Heat Equation Utilizing Proper Orthogonal Decomposition

  • Conference paper
Fast Solution of Discretized Optimization Problems

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 138))

Abstract

The proper orthogonal decomposition (POD) is a method to derive reduced-order models for dynamical systems. In this paper POD is utilized to solve a nonlinear boundary control problem for the heat equation. The relative simplicity of the equation allows comparison of the POD based algorithm with numerical results obtained from finite element discretization of the optimality system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Afanasiev and M. HinzeAdaptive control of a wake flow using proper orthogonal decompositionin: Shape Optimization & Optimal Design, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 2001.

    Google Scholar 

  2. E. Arian, M. Fahl, and E. W. SachsTrust-region proper orthogonal decomposition for flow controlICASE Report No. 2000–25, 2000.

    Google Scholar 

  3. J. A. Atwell and B. B. KingReduced order controllers for spatially distributed systems via proper orthogonal decomposition, Technical reportICAM Report 99–07–01, July 1999.

    Google Scholar 

  4. H. T. Banks, M. L. Joyner, B. Winchesky, and W. P. WinfreeNondestructive evaluation using a reduced-order computational methodologyInverse Problems16 (2000), pp. 1–17.

    Article  Google Scholar 

  5. H. T. Banks, R. C. H. del Rosario, and R. C. SmithReduced order model feedback control design: Numerical implementation in a thin shell modelTechnical report, CRSC-TR98–27, North Carolina State University, 1998.

    Google Scholar 

  6. G. Berkooz, P. Holmes, and J. L. LumleyTurbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press, 1996.

    MATH  Google Scholar 

  7. K. FukunagaIntroduction to Statistical RecognitionAcademic Press, 1990.

    Google Scholar 

  8. H. Goldberg and F. TröltzschSecond order sufficient optimality conditions for a class of nonlinear parabolic boundary control problemsSIAM J. Control Optim.31 (1993), pp. 1007–1025.

    Article  MATH  Google Scholar 

  9. H. Goldberg and F. TröltzschOn a Lagrange-Newton method for a nonlinear parabolic boundary control problemPreprint 96–8, Technische Universitht ChemnitzZwickau, 1997.

    Google Scholar 

  10. H. Goldberg and F. TröltzschOn a SQP-multigrid technique for nonlinear parabolic boundary control problemsPreprint 97–11, Technische Universität ChemnitzZwickau, 1997.

    Google Scholar 

  11. M. Hinze and K. KunischThree control methods for time-dependent fluid flowsubmitted, 1999.

    Google Scholar 

  12. K. Ito and S. S. RavindranA reduced basis method for control problems governed by PDEsControl and Estimation of Distributed Parameter Systems, Internat. Ser. Numer. Math.126 (1998).

    Google Scholar 

  13. K. Ito and J. D. SchroeterReduced order feedback synthesis for viscous incompressible flowsTechnical Report CRSC-TR98–41, North Carolina State University, 1998.

    Google Scholar 

  14. K. Kunisch and S. VolkweinControl of Burgers’ equation by a reduced order approach using proper orthogonal decompositionJOTA102 (2) (1999), pp. 345–371.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Kunisch and S. VolkweinGalerkin proper orthogonal decomposition methods for parabolic problemsto appear in Numer. Math.

    Google Scholar 

  16. H. V. Ly and H. T. TranModelling and control of physical processes using proper orthogonal decompositionMathematical and Computer Modeling33 (2001), pp. 223–236.

    Article  MATH  Google Scholar 

  17. A. PazySemigroups of Linear Operators and Applications to Partial Differential EquationsSpringer-Verlag, 1983.

    Book  Google Scholar 

  18. J. P. Raymond and H. ZidaniHamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equationsAppl. Math. Optim.39No. 2 (1999), pp. 143–177.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. SirovichTurbulence and the dynamics of coherent structures, parts I-III.Quart. Appl. Math.XLV(1987), pp. 561–590.

    MathSciNet  Google Scholar 

  20. F. TröltzschAn SQP method for the optimal control of a nonlinear heat equationControl and Cybernetics23 (1994), pp. 267–288.

    MathSciNet  MATH  Google Scholar 

  21. F. TröltzschLipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbationsDynamics of Continuous, Discrete and Impulsive Systems, 1999.

    Google Scholar 

  22. F. TröltzschOn the Lagrange-Newton-SQP method for the optimal control of semi-linear parabolic equationsSIAM J. Control Optim.3 (1999), pp. 294–312.

    Article  Google Scholar 

  23. S. VolkweinOptimal control of a phase-field model using the proper orthogonal decompositionZ. Angew. Math. Mech. (ZAMM)81No. 2 (2001), pp. 83–97.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Diwoky, F., Volkwein, S. (2001). Nonlinear Boundary Control for the Heat Equation Utilizing Proper Orthogonal Decomposition. In: Hoffmann, KH., Hoppe, R.H.W., Schulz, V. (eds) Fast Solution of Discretized Optimization Problems. ISNM International Series of Numerical Mathematics, vol 138. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8233-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8233-0_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9484-5

  • Online ISBN: 978-3-0348-8233-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics