Skip to main content

Numerical Optimal Control Strategies for Semi-Active Vehicle Suspension with Electrorheological Fluid Dampers

  • Conference paper

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 138))

Abstract

Optimal control problems for semi-active vehicle suspensions and their numerical solution are discussed in this paper. For this purpose, several models of the vehicle dynamics with different levels of details and a general formulation of different sub-criteria for rating the ride comfort and safty are presented and investigated in this paper. The benefits and drawbacks of various numerical optimal control methods such as LQR-, H and direct collocation when applied to the different optimal control problems for semi-active vehicle suspension are investigated. Furthermore, the semi-active vehicle suspension is based on a dynamic model of the recently developed prototype of a continuously controllable shock absorber with a smart, electrorheological fluid. These are smart materials and have been known for already more than 50 years. They belong to the group of colloidal suspensions which are able to change their viscosity drastically. This depends upon molecular chain formations in the fluid caused by an electric field perpendicular to the direction of flow. Very low control costs and fast response times of the ERF devices have sparked much an interest in ERFs in the last couple of years. The development of new control strategies for ERF devices integrated into complex multi body systems require a high level of knowledge of the behavior of the ERF subsystems. Dynamic models of controllable ERF devices are studied with respect to their particular dependencies, effects and requirements. An application is presented here which merges linear optimal control strategies and ERF shock absorbers within a complex model of full car dynamics. Here we give a mathematical formulation for the objectives of ride comfort and safety that takes into account various measurement possibilities. The result demonstrates the large potential of optimally controlled ERF devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Atkin, Xiao Shi, and W. A. BulloughSolutions of the constitutive equations for the flow of an electrorheological fluid in radial configurationsJournal of Rheology35(7) (1991), pp. 1441–1461.

    Article  Google Scholar 

  2. H. T. Banks, R. C. Smith, and Y. WangSmart Material Structures — Modeling Estimation and Control J. Wiley & Sons, 1996.

    MATH  Google Scholar 

  3. T. Basar and P. BernhardH -Optimal Control and Related Minimax Design Problems Problems A Dynamic Game Approach,Berlin, Birkhäuser, 1991.

    Google Scholar 

  4. J. T. BettsSurvey of numerical methods for trajectory optimizationAIAA J. Guidance, Control, and Dynamics212 (1998), pp. 193–207.

    Article  MATH  Google Scholar 

  5. A. E. Bryson and Y. C. HoApplied Optimal ControlGinn and Company, 1969; Rev. printing, Hemisphere, 1975.

    Google Scholar 

  6. S. A. Burton, N. Makris, I. Konstantopoulos, and P. J. AntsaklisModeling the response of ER damper: phenomenology and emulationJournal of Engineering Mechanics122 (1996), pp. 897–906.

    Article  Google Scholar 

  7. T. Butz and O. von StrykModelling and simulation of electro-and magnetorheological fluid dampersZ. Angew. Math. Mech., 2001, to appear.

    Google Scholar 

  8. J. D. Carlson and B. F. Spencer Jr.Magneto-rheological fluid dampers: scalability and design issues for application to dynamic hazard mitigationin: Proc. Intern. Workshop on Structural Control, Hong Kong, Dec. 18–20,1996, to appear.

    Google Scholar 

  9. C. Chucholowski, M. Vögel, O. von Stryk, and T.-M. WolterReal time simulation and online control for virtual test drives of carsin: H.-J. Bungartz, F. Durst, Chr. Zenger, eds., High Performance Scientific and Engineering Computing, Lecture Notes in Computational Science and Engineering8 Springer-Verlag, 1999, pp. 157–166.

    Chapter  Google Scholar 

  10. P. Dorato, C. Abdallah, and V. CeroneLinear-Quadratic Control — An IntroductionEnglewood Cliffs, N.J., Prentice-Hall, 1995.

    MATH  Google Scholar 

  11. R. C. Ehrgott and S. F. MasriModelling the oscillatory dynamic behavior of electrorheological materials in shearSmart Material Structures1 (1992), pp. 275–285.

    Article  Google Scholar 

  12. G. GentaMotor Vehicle Dynamics, Modelling and SimulationSeries on Advances in Mathematics for Applied Sciences43,London, World Scientific, 1997.

    MATH  Google Scholar 

  13. R. H. W. Hoppe, G. Mazurkevitch, U. Rettig, and O. von StrykModeling, simulation, and control of electrorheological fluid devicesin: H.-J. Bungartz et al., eds., Lectures on Applied Mathematics, Springer-Verlag, 2000, pp. 251–276.

    Chapter  Google Scholar 

  14. G. M. Kamath and N. M. Wereley, Anonlinear viscoelastic-plastic model for electrorheological fluidsSmart Material Structures,6 (1997), pp. 351–359.

    Article  Google Scholar 

  15. B. Kim and P. N. RoschkeLinearization of Magnetorheological Behavior Using a Neural NetworkProc. of the American Control Conf., San Diego, June 1999, pp. 4501–4505.

    Google Scholar 

  16. W. Kortüm and P. LugnerSystemdynamik and Regelung von FahrzeugenSpringer, 1994.

    Book  Google Scholar 

  17. B. Koslik, G. Rill, O. von Stryk, and D. E. ZampieriActive suspension design for a tractor by optimal control methodsPreprint SFB-438–9801, Sonderforschungsbereich 438, Technische Universität München - Universität Augsburg, 1998.

    Google Scholar 

  18. M. MitschkeDynamik der KraftfahrzeugeSpringer-Verlag, 1994.

    Google Scholar 

  19. J. A. PowellModelling the oscillatory response of an electrorheological fluidSmart Material Structures3 (1994), pp. 416–438.

    Article  Google Scholar 

  20. K. R. Rajapogal and A. S. WinemanFlow of electrorheological materialsActa Mechanica91 (1992), pp. 57–75.

    Article  MathSciNet  Google Scholar 

  21. P. E. Gill, W. Murray, and M. A. SaundersUser’s Guide for SNOPT 5.3: A Fortran Package for Large-Scale Nonlinear ProgrammingDraft, Department of Mathematics, University of California, San Diego, December 1998, Software Version 5.3–5, June 1999.

    Google Scholar 

  22. B. F. Spencer Jr., S. J. Dyke, M. K. Sain, and J. D. CarlsonModeling and control of magnetorheological dampers for seismic response reductionSmart Materials and Structures5 (1996), pp. 565–575.

    Article  Google Scholar 

  23. B. F. Spencer Jr., S. J. Dyke, M. K. Sain, and J. D. CarlsonPhenomenological model of a magnetorheologicaldamper, ASCE Journal of Eng. Mech.123(3)(1996), pp. 1–9.

    Google Scholar 

  24. R. Stanway, D. J. Peel, and W. A. BulloughDynamic modelling of an ER vibration damper for vehicle suspension applicationsSmart Material Structures5 (1996), pp. 591–606.

    Article  Google Scholar 

  25. R. Stanway, J. L. Spronston, and A. K. El-WahedApplications of electrorheological fluids in vibration control: a surveySmart Material Structures5 (1995), pp. 464–482.

    Article  Google Scholar 

  26. O. von StrykUser’s Guide for DIRCOL Version 2.1: a direct collocation method for the numerical solution of optimal control problemsLehrstuhl M2 Höhere Mathematik and Numerische Mathematik, Technische Universität München, 1999.

    Google Scholar 

  27. O. von StrykNumerical Hybrid Optimal Control and Related TopicsHabilitationsschrift, Technische Universität München, 2000.

    Google Scholar 

  28. M. Vögel, O. von Stryk, R. Bulirsch, T.-M. Wolter, and C. ChucholowskiAn optimal control approach to real-time vehicle guidancesubmitted for publication.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Rettig, U., von Stryk, O. (2001). Numerical Optimal Control Strategies for Semi-Active Vehicle Suspension with Electrorheological Fluid Dampers. In: Hoffmann, KH., Hoppe, R.H.W., Schulz, V. (eds) Fast Solution of Discretized Optimization Problems. ISNM International Series of Numerical Mathematics, vol 138. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8233-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8233-0_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9484-5

  • Online ISBN: 978-3-0348-8233-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics