Advertisement

From Group Actions to Determinant Bundles Using (Heat-kernel) Renormalization Techniques

  • Sylvie Paycha
Part of the DMV Seminar Band book series (OWS, volume 31)

Abstract

The functional quantization of gauge field theories leads to interesting infinite dimensional geometric problems from which one expects to extract some information on the original gauge theory. The geometric framework underlying a gauge field theory is essentially that of an infinite dimensional Lie group G, the gauge group, acting on an infinite dimensional manifold, the manifold of paths p. Here we shall consider a setting in which this group action gives rise to a principal bundle π : pp/G.

Keywords

Gauge Group Vector Bundle Fundamental Form Elliptic Operator Pseudodifferential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AJPS]
    S. Albeverio, J. Jost, S. Paycha and S. Scarlatti, A mathematical introduction to string theory. Variational problems, geometric and probabilistic methods, London Mathematical Society Lecture Note Series 225, Cambridge University Press, Cambridge, 1997.CrossRefzbMATHGoogle Scholar
  2. [AP]
    M. Arnaudon and S. Paycha, Regularisable and minimal orbits for group actions in infinite dimensions, Comm. Math. Phys. 191 (1998), 641–662.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [B]
    J.-M. Bismut, Localization formulas, superconnections and the index theorem for families, Comm Math. Phys. 103 (1986), 127–166.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BF]
    J.M. Bismut and D.S. Freed, The analysis of elliptic families I, Comm. Math. Phys. 106 (1986), 159–176.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BGV]
    N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators (second edition), Grundlehren der mathematischen Wissenschaften 298, Springer, Berlin, 1996.Google Scholar
  6. [C]
    B.Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.zbMATHGoogle Scholar
  7. [CDMP]
    A. Cardona, C. Ducourtioux, J.P. Magnot and S. Paycha, Weighted traces on algebras of pseudo-differential operators and geometry on loop groups, Preprint 2000.Google Scholar
  8. [FLPTT]
    N. Fagella, A. Lesne, S. Paycha, L. Tedeschini-Lalli and S.T. Tsou, Renormalizations,Proceedings of a Workshop, Publication of: European Women in Mathematics and femmes et mathématiques, Paris, 1996.Google Scholar
  9. [F]
    D. Freed, The geometry of loop groups, J. Diff. Geom. 28 (1988), 223–276.MathSciNetzbMATHGoogle Scholar
  10. [G]
    P. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem (second edition), Studies in advanced mathematics, CRC Press, Boca Raton, FL, 1995.zbMATHGoogle Scholar
  11. [GHL]
    S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer, Berlin-New York, 1987.CrossRefzbMATHGoogle Scholar
  12. [H]
    W.Y. Hsiang, On compact homogeneous minimal submanifolds, Proc. Nat. Acad. Sci. USA 56 (1966), 5–6.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [J]
    J. Jost, Riemannian geometry and geometric analysis (second edition), Springer, Berlin, 1998.zbMATHGoogle Scholar
  14. [K]
    C. Kassel, Le résidu non commutatif (d’aprés M. Wodzicki), Séminaire Bourbaki, Vol. 1988/89, Asterisque No. 177–178 (1989), Exp. No. 708, 199–229.Google Scholar
  15. [KT]
    C. King and C.L. Terng, Minimal submanifolds in path space, in: “Global analysis in modern mathematics” (Orono, ME, 1991; Waltham, MA, 1992), 253–281, Publish or Perish, Houston, TX, 1993.Google Scholar
  16. [KV]
    M. Kontsevich, S. Vishik, Determinants of elliptic pseudodifferential operators, Preprint of the Max-Planck-Institut fiir Mathematik, 1994;Google Scholar
  17. [KV2]
    M. Kontsevich and S. Vishik, Geometry of determinants of elliptic operators, in: “Functional analysis on the eve of the 21st century”, Vol. 1 (New Brunswick, NJ, 1993), 173–197, Progr. Math. 131, Birkhäuser Boston, Boston, MA, 1995.Google Scholar
  18. [L]
    M. Lesch, On the noncommutative residue for pseudo-differential operators with log-polyhomogeneous symbols, Ann. Global Anal. Geom. 17 (1999), no. 2, 151–187.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Ma]
    J.-P. Magnot, Ph.D. thesis, in preparation.Google Scholar
  20. [M]
    J. Marsden, Applications of global analysis in mathematical physics, Mathematical Lecture Series No. 2, Publish or Perish, Boston, MA, 1974.zbMATHGoogle Scholar
  21. [MRT]
    Y. Maeda, S. Rosenberg and P. Tondeur, The mean curvature of gauge orbits, in: “Global analysis in modern mathematics” (Orono, ME, 1991; Waltham, MA, 1992), 171–217, Publish or Perish, Houston, TX, 1993;Google Scholar
  22. [MRT2]
    Y. Maeda, S. Rosenberg and P. Tondeur, Minimal orbits of metrics, J. Geom. Phys. 23 (1997), 319–349.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [P]
    S. Paycha, Renorrnalized traces as a looking glass into infinite dimensional geometry, Infinite Dim. Analysis, Quantum Probability and Related Topics, to appear.Google Scholar
  24. [PR1]
    S. Paycha and S. Rosenberg, About infinite dimensional group actions and determinant bundles, in: “Analysis on infinite-dimensional Lie groups and algebras” (Marseille, 1997), 355–367, World Sci. Publ., River Edge, NJ, 1998.Google Scholar
  25. [PR2]
    S. Paycha and S. Rosenberg, Curvature on determinant bundles and first Chern forms, J. Geom. Phys., to appear.Google Scholar
  26. [Q]
    D. Quillen, Determinants of Cauchy Riemann operators on Riemann surfaces, Functional Anal. Appl. 19 (1985), no. 1, 31–34.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [R]
    S. Rosenberg, The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds, London Mathematical Society Student Texts 31, Cambridge University Press, Cambridge, 1997.CrossRefzbMATHGoogle Scholar
  28. [T]
    A. Tromba, Teichmüller theory in Riemannian geometry, Lecture notes prepared by Jochen Denzler, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1992.CrossRefzbMATHGoogle Scholar
  29. [W]
    M. Wodzicki, Non-commutative residue. I. Fundamentals, Lecture Notes in Math., 1289, Springer, Berlin-New York, 1987.Google Scholar
  30. [Z]
    Y.N. Zhang, Lévy Laplacian and Brownian particles in Hilbert spaces,J. Funct. Anal. 133 (1995), no. 2, 425–441.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Sylvie Paycha
    • 1
  1. 1.Laboratoire de Mathématiques AppliquéesComplexe Universitaire des CézeauxAubiére CedexFrance

Personalised recommendations