Skip to main content

From Group Actions to Determinant Bundles Using (Heat-kernel) Renormalization Techniques

  • Chapter
Infinite Dimensional Kähler Manifolds

Part of the book series: DMV Seminar Band ((OWS,volume 31))

  • 454 Accesses

Abstract

The functional quantization of gauge field theories leads to interesting infinite dimensional geometric problems from which one expects to extract some information on the original gauge theory. The geometric framework underlying a gauge field theory is essentially that of an infinite dimensional Lie group G, the gauge group, acting on an infinite dimensional manifold, the manifold of paths p. Here we shall consider a setting in which this group action gives rise to a principal bundle π : pp/G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albeverio, J. Jost, S. Paycha and S. Scarlatti, A mathematical introduction to string theory. Variational problems, geometric and probabilistic methods, London Mathematical Society Lecture Note Series 225, Cambridge University Press, Cambridge, 1997.

    Book  MATH  Google Scholar 

  2. M. Arnaudon and S. Paycha, Regularisable and minimal orbits for group actions in infinite dimensions, Comm. Math. Phys. 191 (1998), 641–662.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.-M. Bismut, Localization formulas, superconnections and the index theorem for families, Comm Math. Phys. 103 (1986), 127–166.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.M. Bismut and D.S. Freed, The analysis of elliptic families I, Comm. Math. Phys. 106 (1986), 159–176.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators (second edition), Grundlehren der mathematischen Wissenschaften 298, Springer, Berlin, 1996.

    Google Scholar 

  6. B.Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.

    MATH  Google Scholar 

  7. A. Cardona, C. Ducourtioux, J.P. Magnot and S. Paycha, Weighted traces on algebras of pseudo-differential operators and geometry on loop groups, Preprint 2000.

    Google Scholar 

  8. N. Fagella, A. Lesne, S. Paycha, L. Tedeschini-Lalli and S.T. Tsou, Renormalizations,Proceedings of a Workshop, Publication of: European Women in Mathematics and femmes et mathématiques, Paris, 1996.

    Google Scholar 

  9. D. Freed, The geometry of loop groups, J. Diff. Geom. 28 (1988), 223–276.

    MathSciNet  MATH  Google Scholar 

  10. P. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem (second edition), Studies in advanced mathematics, CRC Press, Boca Raton, FL, 1995.

    MATH  Google Scholar 

  11. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer, Berlin-New York, 1987.

    Book  MATH  Google Scholar 

  12. W.Y. Hsiang, On compact homogeneous minimal submanifolds, Proc. Nat. Acad. Sci. USA 56 (1966), 5–6.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Jost, Riemannian geometry and geometric analysis (second edition), Springer, Berlin, 1998.

    MATH  Google Scholar 

  14. C. Kassel, Le résidu non commutatif (d’aprés M. Wodzicki), Séminaire Bourbaki, Vol. 1988/89, Asterisque No. 177–178 (1989), Exp. No. 708, 199–229.

    Google Scholar 

  15. C. King and C.L. Terng, Minimal submanifolds in path space, in: “Global analysis in modern mathematics” (Orono, ME, 1991; Waltham, MA, 1992), 253–281, Publish or Perish, Houston, TX, 1993.

    Google Scholar 

  16. M. Kontsevich, S. Vishik, Determinants of elliptic pseudodifferential operators, Preprint of the Max-Planck-Institut fiir Mathematik, 1994;

    Google Scholar 

  17. M. Kontsevich and S. Vishik, Geometry of determinants of elliptic operators, in: “Functional analysis on the eve of the 21st century”, Vol. 1 (New Brunswick, NJ, 1993), 173–197, Progr. Math. 131, Birkhäuser Boston, Boston, MA, 1995.

    Google Scholar 

  18. M. Lesch, On the noncommutative residue for pseudo-differential operators with log-polyhomogeneous symbols, Ann. Global Anal. Geom. 17 (1999), no. 2, 151–187.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-P. Magnot, Ph.D. thesis, in preparation.

    Google Scholar 

  20. J. Marsden, Applications of global analysis in mathematical physics, Mathematical Lecture Series No. 2, Publish or Perish, Boston, MA, 1974.

    MATH  Google Scholar 

  21. Y. Maeda, S. Rosenberg and P. Tondeur, The mean curvature of gauge orbits, in: “Global analysis in modern mathematics” (Orono, ME, 1991; Waltham, MA, 1992), 171–217, Publish or Perish, Houston, TX, 1993;

    Google Scholar 

  22. Y. Maeda, S. Rosenberg and P. Tondeur, Minimal orbits of metrics, J. Geom. Phys. 23 (1997), 319–349.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Paycha, Renorrnalized traces as a looking glass into infinite dimensional geometry, Infinite Dim. Analysis, Quantum Probability and Related Topics, to appear.

    Google Scholar 

  24. S. Paycha and S. Rosenberg, About infinite dimensional group actions and determinant bundles, in: “Analysis on infinite-dimensional Lie groups and algebras” (Marseille, 1997), 355–367, World Sci. Publ., River Edge, NJ, 1998.

    Google Scholar 

  25. S. Paycha and S. Rosenberg, Curvature on determinant bundles and first Chern forms, J. Geom. Phys., to appear.

    Google Scholar 

  26. D. Quillen, Determinants of Cauchy Riemann operators on Riemann surfaces, Functional Anal. Appl. 19 (1985), no. 1, 31–34.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Rosenberg, The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds, London Mathematical Society Student Texts 31, Cambridge University Press, Cambridge, 1997.

    Book  MATH  Google Scholar 

  28. A. Tromba, Teichmüller theory in Riemannian geometry, Lecture notes prepared by Jochen Denzler, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1992.

    Book  MATH  Google Scholar 

  29. M. Wodzicki, Non-commutative residue. I. Fundamentals, Lecture Notes in Math., 1289, Springer, Berlin-New York, 1987.

    Google Scholar 

  30. Y.N. Zhang, Lévy Laplacian and Brownian particles in Hilbert spaces,J. Funct. Anal. 133 (1995), no. 2, 425–441.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Paycha, S. (2001). From Group Actions to Determinant Bundles Using (Heat-kernel) Renormalization Techniques. In: Huckleberry, A., Wurzbacher, T. (eds) Infinite Dimensional Kähler Manifolds. DMV Seminar Band, vol 31. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8227-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8227-9_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6602-5

  • Online ISBN: 978-3-0348-8227-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics