Infinite-dimensional Groups and their Representations

  • Karl-Hermann Neeb
Part of the DMV Seminar Band book series (OWS, volume 31)


In this paper we discuss some of the basic general notions and results which play a key role in the representation theory of infinite-dimensional Lie groups modeled over sequentially complete locally convex (s.c.l.c.) spaces. In the following each locally convex space will implicitly be assumed to be Hausdorff.


Compact Subset Line Bundle Uniform Convergence Complex Manifold Topological Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bou59]
    Bourbaki, N., “Integration,” Chap. 6, Hermann, Paris, 1959Google Scholar
  2. [Bou71]
    Bourbaki, N., “Topologie Generale,” Chap. 10, Hermann, Paris, 1971Google Scholar
  3. [Bou87]
    Bourbaki, N., “Topological Vector Spaces,” Chap. 1–5, Springer-Verlag, 1987CrossRefGoogle Scholar
  4. [FK88]
    Frohlicher, A., and A. Kriegl, “Linear Spaces and Differentiation Theory,” J. Wiley, Interscience, 1988Google Scholar
  5. [G199]
    [G199] Glockner, H., Direct limit Lie groups and manifolds, Kyoto J. Math., to appearGoogle Scholar
  6. [Gr97]
    Grabowski, J., Derivative of the exponential mapping for infinite-dimensional Lie groups, Preprint, 1997Google Scholar
  7. [Ha82]
    Hamilton, R., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222MathSciNetCrossRefzbMATHGoogle Scholar
  8. [He71]
    Herve, M., “Analytic and Plurisubharmonic Functions,” Lecture Notes in Mathematics 198, Springer Verlag, Berlin, 1971Google Scholar
  9. [He89]
    Herve, M., “Analyticity in Infinite-dimensional Spaces,” de Gruyter, Berlin, 1989CrossRefGoogle Scholar
  10. [HP57]
    Hille, E., and R.S. Phillips, “Functional Analysis and Semigroups,” Amer. Math. Soc. Colloquium Publications XXXI, Providence, Rhode Island, 1957Google Scholar
  11. [Hu94]
    Husemoller, D., “Fibre Bundles,” Graduate Texts in Math., Springer, New York, 1994Google Scholar
  12. [Ka85]
    Kac, V. G., “Infinite-dimensional Groups with Applications,” Mathematical Sciences Research Institute Publications 4, Springer-Verlag, Berlin, Heidelberg, New York, 1985CrossRefGoogle Scholar
  13. [Ke74]
    Keller, H. H., “Differential Calculus in Locally Convex Spaces,” Lecture Notes in Math. 417, Springer Verlag, 1974Google Scholar
  14. [Ki76]
    Kirillov, A. A., “Elements of the Theory of Representations,” Grundlehren der mathematischen Wissenschaften 220, Springer-Verlag, Berlin, Heidelberg, 1976CrossRefGoogle Scholar
  15. [KM97a]
    Kriegl, A., and P. W. Michor, “The Convenient Setting of Global Analysis,” Amer. Math. Soc., Providence R. I., 1997Google Scholar
  16. [KM97b]
    Kriegl, A., and P. W. Michor, Regular infinite-dimensional Lie groups, Journal of Lie Theory 7 (1997), 61–99MathSciNetzbMATHGoogle Scholar
  17. [Li95]
    Lisiecki, W., Coherent state representations. A survey, Reports on Math. Phys. 35 (1995), 327–358MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Mi89]
    Mickelsson, J., “Current algebras and groups,” Plenum Press, New York, 1989Google Scholar
  19. [Mi83]
    Milnor, J., Remarks on infinite-dimensional Lie groups, Proc Summer School on Quantum Gravity, Ed. B. DeWitt, Les Houches, 1983Google Scholar
  20. [Na69]
    Nachbin, L., “Topology on Spaces of Holomorphic Mappings,” Ergebnisse der Math. 47, Springer Verlag, Berlin, 1969CrossRefGoogle Scholar
  21. [NRW91]
    Natarajan, L., Rodriquez-Carrington, E., and J. A. Wolf, Differentiable struc- ture for direct limit groups, Letters in Mathematical Physics 23 (1991), 99–109CrossRefzbMATHGoogle Scholar
  22. [NRW93]
    Natarajan, L., Locally convex Lie groups, Nova Journal of Algebra and Geometry 2:1 (1993), 59–87MathSciNetzbMATHGoogle Scholar
  23. [NRW94]
    Natarajan, L., New classes of infinite-dimensional Lie groups, Proceedings of Symposia in Pure Math. 56:2 (1994), 59–87Google Scholar
  24. [Ne99]
    Neeb, K.-H., Borel-Weil theory for loop groups, in this volumeGoogle Scholar
  25. [PS86]
    Pressley, A., and G. Segal, “Loop Groups,” Oxford University Press, Oxford, 1986Google Scholar
  26. [Th95]
    Thomas, E. G. F., Vector fields as derivations on nuclear manifolds, Math. Nachr. 176 (1995), 277–286MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Th96]
    Thomas, E. G. F., Calculus on locally convex spaces, Preprint W-9604, Univ. of Groningen, 1996Google Scholar
  28. [Tr67]
    Treves, F., “Topological Vector Spaces, distributions, and kernels,” Academic Press, New York, 1967Google Scholar
  29. [Wa72]
    Warner, G., “Harmonic Analysis on Semisimple Lie Groups I,” Springer, Berlin, Heidelberg, New York, 1972CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Karl-Hermann Neeb
    • 1
  1. 1.Technische Universität DarmstadtFachbereich MathematikDarmstadtGermany

Personalised recommendations