Skip to main content

Infinite-dimensional Groups and their Representations

  • Chapter
Infinite Dimensional Kähler Manifolds

Part of the book series: DMV Seminar Band ((OWS,volume 31))

Abstract

In this paper we discuss some of the basic general notions and results which play a key role in the representation theory of infinite-dimensional Lie groups modeled over sequentially complete locally convex (s.c.l.c.) spaces. In the following each locally convex space will implicitly be assumed to be Hausdorff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourbaki, N., “Integration,” Chap. 6, Hermann, Paris, 1959

    Google Scholar 

  2. Bourbaki, N., “Topologie Generale,” Chap. 10, Hermann, Paris, 1971

    Google Scholar 

  3. Bourbaki, N., “Topological Vector Spaces,” Chap. 1–5, Springer-Verlag, 1987

    Book  Google Scholar 

  4. Frohlicher, A., and A. Kriegl, “Linear Spaces and Differentiation Theory,” J. Wiley, Interscience, 1988

    Google Scholar 

  5. [G199] Glockner, H., Direct limit Lie groups and manifolds, Kyoto J. Math., to appear

    Google Scholar 

  6. Grabowski, J., Derivative of the exponential mapping for infinite-dimensional Lie groups, Preprint, 1997

    Google Scholar 

  7. Hamilton, R., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222

    Article  MathSciNet  MATH  Google Scholar 

  8. Herve, M., “Analytic and Plurisubharmonic Functions,” Lecture Notes in Mathematics 198, Springer Verlag, Berlin, 1971

    Google Scholar 

  9. Herve, M., “Analyticity in Infinite-dimensional Spaces,” de Gruyter, Berlin, 1989

    Book  Google Scholar 

  10. Hille, E., and R.S. Phillips, “Functional Analysis and Semigroups,” Amer. Math. Soc. Colloquium Publications XXXI, Providence, Rhode Island, 1957

    Google Scholar 

  11. Husemoller, D., “Fibre Bundles,” Graduate Texts in Math., Springer, New York, 1994

    Google Scholar 

  12. Kac, V. G., “Infinite-dimensional Groups with Applications,” Mathematical Sciences Research Institute Publications 4, Springer-Verlag, Berlin, Heidelberg, New York, 1985

    Book  Google Scholar 

  13. Keller, H. H., “Differential Calculus in Locally Convex Spaces,” Lecture Notes in Math. 417, Springer Verlag, 1974

    Google Scholar 

  14. Kirillov, A. A., “Elements of the Theory of Representations,” Grundlehren der mathematischen Wissenschaften 220, Springer-Verlag, Berlin, Heidelberg, 1976

    Book  Google Scholar 

  15. Kriegl, A., and P. W. Michor, “The Convenient Setting of Global Analysis,” Amer. Math. Soc., Providence R. I., 1997

    Google Scholar 

  16. Kriegl, A., and P. W. Michor, Regular infinite-dimensional Lie groups, Journal of Lie Theory 7 (1997), 61–99

    MathSciNet  MATH  Google Scholar 

  17. Lisiecki, W., Coherent state representations. A survey, Reports on Math. Phys. 35 (1995), 327–358

    Article  MathSciNet  MATH  Google Scholar 

  18. Mickelsson, J., “Current algebras and groups,” Plenum Press, New York, 1989

    Google Scholar 

  19. Milnor, J., Remarks on infinite-dimensional Lie groups, Proc Summer School on Quantum Gravity, Ed. B. DeWitt, Les Houches, 1983

    Google Scholar 

  20. Nachbin, L., “Topology on Spaces of Holomorphic Mappings,” Ergebnisse der Math. 47, Springer Verlag, Berlin, 1969

    Book  Google Scholar 

  21. Natarajan, L., Rodriquez-Carrington, E., and J. A. Wolf, Differentiable struc- ture for direct limit groups, Letters in Mathematical Physics 23 (1991), 99–109

    Article  MATH  Google Scholar 

  22. Natarajan, L., Locally convex Lie groups, Nova Journal of Algebra and Geometry 2:1 (1993), 59–87

    MathSciNet  MATH  Google Scholar 

  23. Natarajan, L., New classes of infinite-dimensional Lie groups, Proceedings of Symposia in Pure Math. 56:2 (1994), 59–87

    Google Scholar 

  24. Neeb, K.-H., Borel-Weil theory for loop groups, in this volume

    Google Scholar 

  25. Pressley, A., and G. Segal, “Loop Groups,” Oxford University Press, Oxford, 1986

    Google Scholar 

  26. Thomas, E. G. F., Vector fields as derivations on nuclear manifolds, Math. Nachr. 176 (1995), 277–286

    Article  MathSciNet  MATH  Google Scholar 

  27. Thomas, E. G. F., Calculus on locally convex spaces, Preprint W-9604, Univ. of Groningen, 1996

    Google Scholar 

  28. Treves, F., “Topological Vector Spaces, distributions, and kernels,” Academic Press, New York, 1967

    Google Scholar 

  29. Warner, G., “Harmonic Analysis on Semisimple Lie Groups I,” Springer, Berlin, Heidelberg, New York, 1972

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Neeb, KH. (2001). Infinite-dimensional Groups and their Representations. In: Huckleberry, A., Wurzbacher, T. (eds) Infinite Dimensional Kähler Manifolds. DMV Seminar Band, vol 31. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8227-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8227-9_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6602-5

  • Online ISBN: 978-3-0348-8227-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics