Skip to main content

Hadamard Well-posedness of Weak Solutions in Nonlinear Dynamic Elasticity-full von Karman Systems

  • Chapter

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 50))

Abstract

Dynamic systems of nonlinear elasticity described by von Karman equations, one of the fundamental equations in mathematical physics, have a long tradition in the literature [11, 5, 24, 33, 16, 15, 14, 8]. Their importance stems from the fact that many physical phenomena related to oscillation theory are described by dynamic elastic models. Propagation of waves, oscillations and vibrations of membranes, plates, shells, etc. are governed by nonlinear elastic systems involving wave and plate equations or combination thereof.

Research partially supported by the National Science Foundation under Grant DMS-0104305

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Benabdallah and I. Lasiecka. “Exponential decay rates for a full von karman system of dynamic thermoelasticity”. J. Differential Equations, 160:51–93, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Böhm. “Global well-posedness of the dynamic von Karman Equations for generalized Solutions”. Manuscript, 1994.

    Google Scholar 

  3. I. Chueskov. “Finite dimensionality of an attractor in some problems of nonlinear shell theory”. Math. USSR Sbornik, 61:411–420, 1988.

    Article  Google Scholar 

  4. I. Chueskov. “Strong solutions and the attractors of the von Karman equations”. Math. USSR Sbornik, 69:25–35, 1991.

    Article  Google Scholar 

  5. Ph. Ciarlet and P. Rabier. “Les Equations de von Karman”. Springer Verlag, 1982.

    Google Scholar 

  6. R. Coifman, P.L. Lions, Y. Meyer, and S. Semmers. “Compensated compactness and Hardy spaces”. J. Math. Pure Appliq., 72:247–286, 1993.

    MATH  Google Scholar 

  7. A. Bout et de Monvel and I. Chueshov. “Uniqueness theorem for weak solutions of von Karman evolution equations”. Journal Mathematical Analysis and Applications, 221:419–429, 1998.

    Article  MATH  Google Scholar 

  8. G. Duvaut and J.L. Lions. “Les Inéquations en Mécaniques et en Physiques”. Dunod, 1972.

    Google Scholar 

  9. A. Favini, M. A. Horn, I. Lasiecka, and D. Tataru. “Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation.” Differential and Integral Equations, 9:267–294, 1996, with Addendum Diff. Int. Equations 10: 197-200, 1997.

    MathSciNet  MATH  Google Scholar 

  10. J. L. Lions. “Quelques Methods de Résolution des Problèmes aux Limites Non-linéaires”. Dunod, Paris, 1969.

    Google Scholar 

  11. T. Von Karman. “Festigkeitprobleme in Maschinenbau”. Encyklopädie der Mathematischen Wissenschaften, 4:314–385, 1910.

    Google Scholar 

  12. H. Koch. “Mixed problems for fully nonlinear hyperbolic equations”. Math. Z., 214:9–42, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Koch and A. Stachel. “Global existence of classical solutions to the dynamical von Karman equations”. Math. Methods in the Applied Sciences, 16:581–586, 1993.

    Article  MATH  Google Scholar 

  14. J. Lagnese. “Boundary Stabilization of Thin Plates”. SIAM, 1989.

    Google Scholar 

  15. J. Lagnese. “Modeling and stabilization of nonlinear plates”. International Ser. Num. Math., 100:247–264, 1991.

    MathSciNet  Google Scholar 

  16. J. Lagnese. “Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary”. Nonlinear Analysis, 16:35–54, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Lagnese and G. Leugering. “Uniform stabilization of a nonlinear beam by nonlinear boundary feedback”. Journal of Differential Equations, 91:355–388, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Lagnese and J.L. Lions. “Modelling analysis and control of thin plates”. Masson, 1988.

    Google Scholar 

  19. I. Lasiecka. “Finite dimensionality of attractors associated with von Karman plate equations and boundary damping”. Journal Differential Equations, 117:357–389, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Lasiecka. “Intermediate Solutions to Full von Karman System of Dynamic Nonlinear Elasticity”. Applicable Analysis, 68:121–148, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Lasiecka. “Uniform stabilizability of a full von Karman system with nonlinear boundary feedback”. SIAM J. on Control, 36:1376–1422, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Lasiecka. “Uniform decay rates for full von Karman system of dynamic elasticity with free boundary conditions and partial boundary dissipation”. Communications in Partial Differential Equations, 24:1801–1849, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Lindblad and CD. Sogge. “On existence and scattering with minimal regularity for semilinear wave equation”. Journal of Functional Analysis, 130:357–426, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Morozov. “Non-linear vibrations of thin plates with allowance for rotational inertia”. Sov. Math, 8:1137–1141, 1967.

    MATH  Google Scholar 

  25. H. Pecher. “Nonlinear small data scattering for the wave and Klein-Gordon equations”. Math. Z. Journal of Functional Analysis, 185:261–270, 1984.

    MathSciNet  MATH  Google Scholar 

  26. J. Puel and M. Tucsnak. “Boundary stabilization for the von Karman equations”. SIAM J. on Control, 33:255–273, 1996.

    Article  MathSciNet  Google Scholar 

  27. J. Puel and M. Tucsnak. “Global existence for the full von Karman system”. Applied Mathematics and Optimization, 34:139–161, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. I. Sedenko. “On uniqueness of the generalized solutions of initial boundary value problem for Marguerre-Vlasov nonlinear oscillations of the shallow shells”. Russian Izvestiya, North-Caucasus Region, Ser. Natural Sciences, 1–2, 1994.

    Google Scholar 

  29. V. I. Sedenko. “On the uniqueness theorem to generalized solutions of initial boundary-value problems to the Maquerre-Vlasov vibrations of shallow shells with clamped boundary conditions”. Applied Mathematics and Optimization, 39:309–327, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Strauss. “On continuity of functions with values in various Banach spaces”. Pacific Journal of Mathematics, 19:543–551, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Tataru and M. Tucsnak. “On the Cauchy problem for the full von Karman system”. NODEA, 4:325–340, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  32. W. van Wahl. “On nonlinear evolution equations in Banach spaces and on nonlinear vibrations of the clamped plate”. Bayreuther Mathematische Schriften, 7:1–93, 1981.

    Google Scholar 

  33. I. Vorovic. “On some direct methods in nonlinear theory of vibration of curved shells”. Izv. Akad. Nauk. SSSR. Mat., 21:747–784, 1957.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Koch, H., Lasiecka, I. (2002). Hadamard Well-posedness of Weak Solutions in Nonlinear Dynamic Elasticity-full von Karman Systems. In: Lorenzi, A., Ruf, B. (eds) Evolution Equations, Semigroups and Functional Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 50. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8221-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8221-7_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9480-7

  • Online ISBN: 978-3-0348-8221-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics