Skip to main content

Dual Discrete Canonical Systems and Dual Orthogonal Polynomials

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 134))

Abstract

The string equation

$$\frac{{d^2 \phi \left( {x,\lambda } \right)}}{{dx^2 }} = \lambda \rho ^2 \left( x \right)\phi \left( {x,\lambda } \right),\rho \left( x \right) > 0,0 \leqslant x \leqslant l$$

can be written in the form

$$\frac{{d^2 \phi \left( {x,\lambda } \right)}}{{dx^2 }} = \lambda \frac{{dM}}{{dx}}\phi \left( {x,\lambda } \right),$$
((0.1))

where

$$M\left( x \right) = \int\limits_0^x {\rho ^2 \left( t \right)dt.} $$

The equation

$$\frac{{d^2 \tilde \phi \left( {M,\lambda } \right)}}{{dM^2 }} = \lambda \frac{{dx}}{{dM}}\tilde \phi \left( {M,\lambda } \right)$$
((0.2))

is said to be dual to equation (0.1). The notion of a dual string was investigated by I.S. Kac and M.G. Krein [1]. Kac and Krein obtained the dual string equation from the original by interchanging the variables x and M(x). Let us add conditions

$$\phi \left( {0,\lambda } \right) = 1,\phi '\left( {0,\lambda } \right) = 0,$$
((0.3))
$$\tilde \phi \left( {0,\lambda } \right) = 0,\tilde \phi '\left( {0,\lambda } \right) = 1$$
((0.4))

to equations (0.1) and (0.2).

To Harry Dym, with whom I began working on the notion of duality, with attachment and friendship

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kac I.S., Krein M.G.On the spectral function of the stringAmer. Math. Soc. Translation 103 (1974), 19–102.

    MATH  Google Scholar 

  2. Dym H., Sakhnovich L.A.On dual canonical systems and dual matrix string equationto appear.

    Google Scholar 

  3. Sakhnovich L.A., Interpolation Theory and its applications, Kluwer, Dordrecht, 1997.

    Book  MATH  Google Scholar 

  4. Bolotnikov V., Sakhnovich L.A.On an operator approach to interpolation problems for Stieltjes functions, Integral Equations and Operator Theory, v. 35, No. 4 (1999), 423–470.

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezanskii Yu.M. Expansion in Eigenfunctions of Self-adjoint Operators, Amer. Math. Soc., Providence, 1968.

    Google Scholar 

  6. Szegö G., Orthogonal polynomials, NY, 1959.

    Google Scholar 

  7. Bateman H., Erdelyi A., Higher transcendental functions, Vol. 2, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Sakhnovich, L. (2002). Dual Discrete Canonical Systems and Dual Orthogonal Polynomials. In: Alpay, D., Vinnikov, V., Gohberg, I. (eds) Interpolation Theory, Systems Theory and Related Topics. Operator Theory: Advances and Applications, vol 134. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8215-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8215-6_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9477-7

  • Online ISBN: 978-3-0348-8215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics