Breadth First Search, Triangle-Free Graphs and Brownian Motion

  • Anne-Elisabeth Baert
  • Vlady Ravelomanana
  • Loÿs Thimonier
Conference paper
Part of the Trends in Mathematics book series (TM)


One major problem in the enumeration of random graphs concerns triangle-free graphs. In this paper we study Breadth First Search processes and the associated queues to compute in terms of Wright’s constants the number of triangle-free graphs. Next we prove that this number is equivalent to the number connected labelled graphs by using arguments of the Brownian excursion type.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Aldous, (1991) The continuum random tree. II: An overview. In M.T. Barlow and N.H. Bingham, editors, Stochastic Analysis, pages 23–70 Cambridge University Press, 23–70.CrossRefGoogle Scholar
  2. [2]
    D. Aldous,(1993) The continuum random tree. III Ann. of Probab., 21, 248–289.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    D. Aldous, (1998) Brownian excursion conditioned on its local time Elect. Comm in Probab., 3, 79–90.MathSciNetzbMATHGoogle Scholar
  4. [4]
    E. A. Bender, E. R. Canfield and B. D. McKay, (1990) The Asymptotic Number of labelled Connected Graphs with a Given Number of Vertices and Edges Random Structures & Algorithms 1, 127–169.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    A. Cayley, (1889) A theorem on trees Q. J. Pure Appl. Math., 23, 376–378.Google Scholar
  6. [6]
    P. Chassaing, J.F. Marckert, M. Yor, (2000) The height and width of simple trees Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, Ed. D. Gardy, A. Mokkadem. Birkhauser, 17–30.Google Scholar
  7. [7]
    P. Chassaing, J.F. Marckert, (2001) Parking functions empirical processe and the width of rooted labelled trees Elect. Journ. Comb, 8.Google Scholar
  8. [8]
    M. Drmota, B. Gittenberger,(1997) On the profile of random tree Random Structures & Algorithms 10, No. 4, 421–451.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    F. Harary and E. Palmer, (1973) Graphical Enumeration Academic Press.Google Scholar
  10. [10]
    J. Komlos, P. Major and G. Tusnády, (1976) An approximation of partial sums of independent RV’s and the sample DF.II Z. Wahrscheinlichkeitstheorie verw. Gebiete, 34, 33–58.zbMATHCrossRefGoogle Scholar
  11. [11]
    G. Louchard,(1984) The Brownian excurion: a numerical analysis Comput. Math. Appl. 10, 413–417.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J.F. Marckert, A. Mokkadem, (2001) The depth first processes of Galton-Watson trees converge to the same Brownian excursion Preprint UVSQ 5601.Google Scholar
  13. [13]
    V. V. Petrov, (1975) Sums of independent random variables Springer Berlin.CrossRefGoogle Scholar
  14. [14]
    R. Sedgewick et P. Flajolet, (1996) An Introduction to the Analysis of Algorithms Addison-Wesley.Google Scholar
  15. [15]
    R. Sedgewick, (1988) Algorithms Addison Wesley.Google Scholar
  16. [16]
    J. Spencer, (1997) Enumerating graphs and Brownian Motion Commun Pure Appl. Math. 60, No. 3, 291–294.CrossRefGoogle Scholar
  17. [17]
    L. Takacs, (1993) Limit distributions for queues and random rooted trees J. Appl. Math. Stoch. Ana. 6, No.3, 189–216.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    E. Maitland Wright, (1977) The number of connected sparsely edged graphs Journal of Graph Theory 1, 317–330.MathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Maitland Wright, (1980) The number of connected sparsely edged graphs III Asymptotic results Journal of Graph Theory 4, 393–407.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Anne-Elisabeth Baert
    • 1
  • Vlady Ravelomanana
    • 2
  • Loÿs Thimonier
    • 2
  1. 1.LaRIAUniversité de Picardie Jules-VerneAmiensFrance
  2. 2.LIPNUniversité de Paris-NordVilletaneuseFrance

Personalised recommendations